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Abstract 

The aim of this work is to investigate, how in the adopted model of hydrodynamic lubrication of a conical slide 
bearing, the change of the heat flux value at the bearing shaft, affects bearing operating parameters. In this research, 
the authors use, the known from the literature, Reynolds type equation, describing the stationary hydrodynamic 
lubrication process of a conical slide bearing. The analytical, solutions, that determine the components of the 
lubricating oil velocity vector and the equation (analytical solution of energy equation) determining the three-
dimensional temperature distribution in the lubrication gap, was also adopted from previous works. In order to obtain 
numerical solutions, the Newton’s method was used, and the derivatives in the Reynolds type equation were 
approximated by the finite differences. An application of the method of subsequent approximations allowed 
considering the influence of temperature, pressure and shearing rate on the viscosity of lubricating oil. 
The considerations were performed by adopting the Reynolds condition of the hydrodynamic oil film. It was tested, 
how the assumed value of the heat flux on the bearing shaft surface affects the values of the obtained operating 
parameters, i.e. the transverse and longitudinal component of the load carrying capacity, friction force and coefficient 
of friction. 
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1. Introduction

One of the designed operating parameters of the hydrodynamic slide bearing is the viscosity 
of a lubricating oil. The viscosity of oils depends on the temperature, pressure and shear rate. Neglecting the influence of other factors (e.g. adhesive forces, magnetic field, electric field, oil 
aging), it can be written, that the viscosity of lubricating oil ηp = ηp(T, p,γ ) (where: T – 
temperature in [K], p – pressure in [Pa], γ  – shear rate in [s–1]). 

In the hydrodynamic lubrication theory, using the equations of the momentum conservation 
law and the stream continuity equation, along with the simplification for a thin lubricating layer of 
the slide bearing (in particular, omitting changes in hydrodynamic pressure towards the height 
of the lubrication gap), a Reynolds-type equation is derived [1, 5, 6] (in which, the viscosity value 
occurs), which general analytical solution is unknown. However, it can be used in numerical 
calculations to determine the hydrodynamic pressure distribution in the bearing lubrication gap. 
By using the method of successive approximations, the calculations taking into account the effect 
of pressure on viscosity, can be carried out. There are also known, the analytical solutions of the 
simplified momentum equations, defining the components of oil velocity vector in a thin 
lubricating layer [1, 5, 6]. By using these functions, the three-dimensional distribution of the shear 
rate values in the lubrication gap, can be determined, and then its impact on the viscosity. 
The determination of three-dimensional temperature distribution in the lubrication gap, and taking 
into account its effect on viscosity, requires solving the equation of the energy conservation law. In 
this article, the authors use a known analytical solution of a simplified energy equation for a thin 
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lubricating layer of a stationary process of lubrication [1, 5, 6]. For the solution of this problem 
and determination of the integration constants, two boundary conditions are required. In the 
adopted analytical solution of the energy equation, it was assumed, that there is a known, constant 
temperature at the surface of the shaft. The second boundary condition was that a (constant) heat 
flux is known at the surface of the shaft. The value of the heat flux at the shaft surface adopted in 
the simulations, influences the calculated temperature distribution in the lubrication gap, and 
changes the viscosity of the lubricating oil. The aim of this work is to investigate, how in the 
adopted model of hydrodynamic lubrication of a conical slide bearing, the change of the heat flux 
value at the bearing shaft, affects bearing operating parameters. 
 
2. Bearing model 
 

In Fig. 1 is shown the geometry of the investigated slide conical bearing. 
 

 

Fig. 1. The geometry of concerned slide conical bearing – radial and axial cross-section 
 

The bearing, with a full wrap angle, which operates in a steady state, was considered in this 
research. The assumptions adopted in the research, are: 
– the shaft rotation axis is parallel to the axis of the sleeve, 
– the bearing surfaces are smooth, rigid and without deformations, 
– the bearing sleeve is stationary and the hydrodynamic pressure is generated due to the rotation 

of the bearing shaft with constant speed ω [rpm] (no vibrations, constant load), 
– the flow of incompressible, non-Newtonian lubricant is laminar and non-isothermal,  
– the pressure at the edges of the wedge is equal to the ambient pressure, where the end of the 

lubricating wedge in the circumferential direction is determined by the Reynolds [1, 3, 5] 
(Swift – Steiber) boundary condition: 

 0
k

p

ϕ ϕϕ =

∂
=

∂
, (1) 

– at the bearing shaft and sleeve surfaces, the components of the velocity of the oil layer have the 
same value as the surface to which they adhere, 

– the temperature on the entire surface of the bearing shaft is constant; the temperature at the 
surface of the sleeve is unknown, and a constant value of the heat flux qc [W/m2] is exchanged 
between the surface of the shaft and the lubricating oil. 
The determination of the hydrodynamic pressure distribution in the lubrication gap consisted in 

the numerical solution of the dimensionless Reynolds type equation [1], which can be written 
(in the adopted conical coordinate system) in the following form: 
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where the following dimensionless values and functions have been introduced: Θ = 1 + L1x1cosγ, 
L1 = LR0

–1, y1 = yεs
–1, where 0 ≤ y1 ≤ hp1, x1 = x L–1, where –1 ≤ x1 ≤ 1, p1 = p p0

–1, where 
p0 = U0η0R0

–1ψ –2, U0 = ωR0, η0 [Pa∙s] is a characteristic value of viscosity; the relative radial 
clearance ψ = εsR0

–1∼10–3. The dimensionless height of the lubrication gap hp1 = hpεs
–1, is 

determined by the function [1, 5]:  

 1
1( ) (1 cos ) (sin )ph ϕ λ ϕ γ −= + , (3) 

where the relative eccentricity λ = OO'/εs. Re is the Reynolds number defined as: Re = εsU0ρ0η0
–1, 

where ρ0 [kg/m3] is a characteristic value of density. 
The Eq. (2) also introduces the functions Γm(ϕ, y1, x1), Γd(ϕ, y1, x1), Γc(ϕ, y1, x1), where: 
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where η1 = ηpη0
–1, while integrals of functions Γ1(ϕ, y1, x1), Γ2(ϕ, y1, x1), Γ3(ϕ, y1, x1) are: 

 ,dd 1d ddd 1d 1
0

1
0

2

1
1

00
11

0
1

0

2

1
1

0
1

1 111 1 11




























Γ














Γ−




























Γ=Γ ∫ ∫∫∫ ∫ ∫∫ yyyyyyy

pppp h y

d

h

m

h y y

d

h

ηη
 (7) 

 ,dd )1(1d ddd )1(1d 1
0

1
0 01

1
00

11
0

1
01

1
0

2

1 1 111 1 11




























ΓΓ−














Γ−




























ΓΓ−=Γ ∫ ∫ ∫∫∫ ∫ ∫∫ yyyyyyy

pppp h y y

dm

h

m

h y y

dm

h

ηη
 (8) 

 .dd)1(1d ddd )1(1d 1
0

1
0 0

2

1
1

00
11

0
1

0

2

1
1

0
2

1 1 111 1 11




























Γ−














Γ−




























Γ−=Γ ∫ ∫ ∫∫∫ ∫ ∫∫ yyyyyyy

pppp h y y

m

h

m

h y y

m

h

ηη
 (9) 

The last element in Eq. (2) describes the effect of inertial forces on the pressure distribution, 
resulting from the variable diameter of the shaft, which disappears in the case of journal bearings. 

The apparent viscosity ηp [Pa∙s] is a function of temperature, shear rate and pressure, hence 
the dimensionless viscosity η1 [1] was modelled as the following product: 

 ),(),,(),,(),,( 11111111111 xxyxyxy pT ϕηϕηϕηϕη γ= . (10) 

The factor η1T (ϕ, y1, x1) in Eq. (10) describes the changes in dimensionless viscosity 
depending on the dimensionless temperature T1 = (T – T0) T0

–1Br–1, where T [K] is dimensional 
temperature, T0 [K] is the reference temperature, while dimensionless Brinkman number [1, 2, 5] 
Br = U0

2η0κ0
–1T0

–1, where κ0 [W/(m∙K)] is a characteristic value of thermal conductivity. 
The following model of changes in dimensionless viscosity depending on temperature was adopted 
[1, 2, 5]: 
 ( )10111 Brexp),,( TTxy TT δϕη −= , (11) 
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where δT [K–1] is an experimentally determined parameter. The three-dimensional distributions of 
the dimensionless temperature T1(ϕ, y1, x1) in the lubrication gap of the conical slide bearing, was 
calculated in accordance with the following analytical solution of the energy equation [1, 6]: 
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where the dimensionless thermal conductivity 1
01
−= κκκ  and the dimensionless heat flux: 
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Furthermore, the following designations were introduced in the Eq. (12): 
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The factor ),,( 111 xyϕη γ  in Eq. (10) describes the effect of shear rate on dimensionless viscosity 
of generalized non-Newtonian oil. The Cross model was adopted in this study, therefore: 
 1

1 1 1 1( , , ) [1 ( ) ] ,n
zeroy x k γ

γ γη ϕ η γ −= + 

 

  (17) 

where η1zero [1] is the dimensionless viscosity for low shear rates 0→γ  [1/s], while γk  [s] 
and nγ  [1] are experimental factors. The shear rate ),,( 11 xyϕγ  was calculated according to the 
relationship: 

 ∑∑
= =

=
3

1

3

1
11 2
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jiijxy γγϕγ  , (18) 

where ijγ [1/s] are the components of the strain tensor [1, 2, 5]: TLLA +=1 , for which v grad=L . 
The dimensionless velocity component v1 = vϕU0

–1 in the peripheral direction and the 
dimensionless component v3 = vxL1U0

–1 in the longitudinal direction was calculated in accordance 
with the analytical solutions of momentum conservation equations [1, 6] (the transverse velocity 
component v2 was omitted): 
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The factor η1p(ϕ, x1) in Eq. (10) determines the effect of pressure on the dimensionless 
viscosity. Due to the simplifications adopted for the thin lubricating layer, the model omits 
changes in pressure towards the height of the lubrication gap. It was assumed, that the viscosity 
depends on the pressure according to the following relationship: 

 1 1 0 1( , ) ln(e ),p px p pη ϕ δ= +  (21) 

where e ≈ 2.718 is the Euler’s number and δp [Pa–1] is an experimental factor. 
The coefficients for these models were determined by fitting the above functions to the 

experimental data obtained for 2% ferro-oil, which is not affected by the magnetic field. These 
results are presented in the work [2].The fitting of the curves described with these models was 
made using the least squares approximation method and the lsqcurvefit package from the  
MATLAB software. The determined values are QBr = δT BrT = 3.4224 [1], Qp = δT p0 = 2.7097 [1], 
η1zero = 2.71 [1], kγ  = 0.7129 [s] and nγ  = 0.1064 [1], for the reference values T0 = 363.0 [K] and 
η0 = 0.0263 [Pa∙s]. It was assumed, that: ρ0 = 950 [kg/m3], ρ1 = 1 [1], κ0 = 0.15 [W/(m∙K)], 
κ1 = 1 [1] and the dimensionless constant temperature at bearing shaft surface T1c = 1. 

The MATLAB software from MathWorks was used to write code for this simulation. 
The iterative Newton's method [1, 4] has been implemented, in which the first and second 
derivatives and mixed derivatives were approximated by finite differences. In the first step, the 
initial pressure distribution was calculated (by omitting nonlinear part in Eq. (2) and by assuming, 
that the dimensionless viscosity η1 = 1 [1] for the Gümbel (half-Sommerfeld) condition [1, 3, 5], 
i.e. φk = 180º). The Eq. (21) was then used to calculate the viscosity changes caused by pressure 
changes. The determined pressure distribution was used to calculate the temperature distribution 
using the Eq. (12), and then to determine its effect on viscosity, from Eq. (11) and (10). 
Afterwards, using Eq. (19) and (20), the velocity components were calculated, which were then 
used to determine the shear rate distribution using Eq. (18) and its effect on the viscosity, using 
Eq. (17). Using the updated viscosity values, pressure corrections were calculated with the 
Newton's method (solution of Eq. (2)), and a new pressure distribution was determined. This 
procedure was repeated until the condition for convergence and residuum was reached, i.e. <10–6. 
Then it was checked if the Reynold’s condition was met. If not, then the φk value, of the angle 
determining the end of the lubricating wedge, was increased by ∆φk = 1º. 

The obtained final pressure distribution was used to calculate the transverse C1t [1] and 
the longitudinal C1l [1] dimensionless component of the bearing load carrying capacity, with the 
following relations [1, 6]: 
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The dimensionless friction force Fr1 [1] was calculated with the following equation [1]: 
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and the coefficient of friction µr [1] can be calculated as [1, 5, 6]: 
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1 2 2

1 1 1 .r t lFr C Cµ −= +  (25) 

The simulations were carried out for the bearing with L1 = 0.5 [1], R0 = 0.025 [m], ψ = 10–3 [1], 
γ = 60º and ω = 5000 [rpm], at relative eccentricities λ = 0.1-0.9, for the dimensionless heat fluxes 
at the bearing shaft surface qc1 = –1.0, –0.5, 0.0, 0.5, 1.0. The negative values of qc1 indicate that 
the heat is flowing away from the lubricating gap, and the positive values of qc1 mean, that the heat 
is flowing into the lubricant. 
 

3. Results and discussion 
 

Table 1 shows the influence of the modelled heat flux at the bearing shaft surface, on the 
generated value of the transverse component Ct [1] of the dimensionless bearing load carrying 
capacity. The reference values are the results for the case, when the dimensionless heat flux (at the 
shaft surface) qc1 = 0.0 [1]. In other cases (that is for the qc1 = –1.0, –0.5, 0.5, 1.0), the relative 
changes in the transverse component of load carrying capacity, for various values of the heat flux 
at the shaft surface, were calculated with accordance to the following formula: 

 1
1( ) 100 %,r rX X X Xδ −= − ⋅  (26) 

where Xr is the reference value (for qc1 = 0.0 [1]) and X1 is the considered quantity. 
 

Tab. 1. The influence of the heat flux at the bearing shaft on the transverse component of the load carrying capacity 

λ [1] 
δCt [%] Ct [1] δCt [%] 

qc1 = –1.0 [1] qc1 = –0.5 [1] qc1 = 0.0 [1] qc1 = 0.5 [1] qc1 = 1.0 [1] 
0.1 –3.4 –2.5 0.012 2.5 5.0 
0.2 –2.7 –2.3 0.026 2.3 5.0 
0.3 –2.8 –2.1 0.043 2.6 5.1 
0.4 –2.7 –2.1 0.067 2.5 4.9 
0.5 –2.7 –2.0 0.103 2.5 5.1 
0.6 –2.8 –2.1 0.164 2.5 5.1 
0.7 –2.8 –2.1 0.285 2.6 5.2 
0.8 –3.0 –2.3 0.599 2.7 5.5 
0.9 –3.3 –2.6 2.134 3.1 6.3 

 

When assuming in simulations, that the heat flux at the shaft surface is negative, reduction of 
the transverse load carrying capacity component was obtained. For qc1 = –0.5 [1], the relative decrease 
was from 2.0 [%] at λ = 0.5, to 2.6 [%] at λ = 0.9. For qc1 = –1.0 [1], the relative decrease was from 
2.6 [%] at λ = 0.4, to 3.3 [%] at λ = 0.9. In the calculations carried out for the cases, where heat 
flows from the bearing shaft to the lubrication gap, the Ct value increased. For qc1 = 0.5 [1], they were 
increments of 2.5-3.1 [%]. Increasing the heat flux to qc1 = 1.0 [1] caused more significant relative 
changes than when increasing the value of heat flowing out from qc1 = –0.5 [1] to qc1 = –1.0 [1]. 
At qc1 = 1.0 [1], the increments of transverse component of bearing load carrying capacity were 
of 4.3-6.3 [%]. 

In Tab. 2 are presented the results for the longitudinal component Cl [1] of the dimensionless 
bearing load carrying capacity. The influence of the heat flux at the bearing shaft surface, on the 
generated friction forces is presented in Tab. 3.  

The heat flux at the bearing shaft surface qc1 does not have such a significant effect on friction 
forces, in relation to the induced changes in load carrying capacities. The relative changes in 
the friction force exceeded 1 [%] only for a few of the investigated cases and reached the highest 
value of 1.9 [%] for qc1 = 1.0 [1], at λ = 0.9. How the value of qc1 affects the coefficient of friction 
of the bearing, calculated with the Eq. (25), is shown in the Tab. 4. 
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The presented results show, that the assumption of heat flowing away from the lubrication gap 
causes the reduction of bearing load carrying capacities and friction forces, whereas when 
simulations assume, that the heat flows from the surface of the shaft to the lubricating oil, it causes 
an increase in the bearing load carrying capacities and friction forces. The relative changes are 
greater for the load carrying capacities than for the friction forces, which in effect, causes 
an increase in the value of the coefficient of friction for the negative qc1, and its decrease for the 
positive qc1, in relation to the qc1 = 0.0 [1].  
 
Tab. 2. The influence of the heat flux at the bearing shaft on the longitudinal component of the load carrying capacity 

λ [1] 
δCl [%] Cl [1] δCl [%] 

qc1 = –1.0 [1] qc1 = –0.5 [1] qc1 = 0.0 [1] qc1 = 0.5 [1] qc1 = 1.0 [1] 
0.1 –2.9 –2.9 0.007 2.4 4.3 
0.2 –2.7 –2.0 0.015 2.7 4.7 
0.3 –2.8 –2.0 0.025 2.4 4.8 
0.4 –2.6 –2.1 0.039 2.6 5.2 
0.5 –2.7 –2.0 0.059 2.5 5.1 
0.6 –2.9 –2.1 0.095 2.4 5.1 
0.7 –2.9 –2.1 0.164 2.6 5.2 
0.8 –3.0 –2.3 0.346 2.7 5.5 
0.9 –3.3 –2.6 1.232 3.1 6.3 

 
Tab. 3. The influence of the heat flux at the bearing shaft surface on the friction force 

λ [1] 
δFt [%] Ft [1] δFt [%] 

qc1 = –1.0 [1] qc1 = –0.5 [1] qc1 = 0.0 [1] qc1 = 0.5 [1] qc1 = 1.0 [1] 
0.1 –0.5 –0.4 7.0 0.4 0.9 
0.2 –0.5 –0.4 7.0 0.5 0.9 
0.3 –0.5 –0.4 7.1 0.5 1.0 
0.4 –0.6 –0.5 7.2 0.5 1.0 
0.5 –0.6 –0.5 7.5 0.5 1.0 
0.6 –0.6 –0.5 7.9 0.5 1.1 
0.7 –0.7 –0.5 8.6 0.6 1.2 
0.8 –0.8 –0.6 9.8 0.7 1.4 
0.9 –1.1 –0.9 13.1 1.0 1.9 

 
Tab. 4. The influence of the heat flux at the bearing shaft surface on the coefficient of friction  

λ [1] 
δµt [%] µt [1] δµt [%] 

qc1 = –1.0 [1] qc1 = –0.5 [1] qc1 = 0.0 [1] qc1 = 0.5 [1] qc1 = 1.0 [1] 
0.1 2.4 1.8 507 –2.1 –3.9 
0.2 2.3 1.7 235 –2.0 –3.9 
0.3 2.3 1.7 142 –1.9 –3.8 
0.4 2.3 1.7 94 –1.9 –3.8 
0.5 2.2 1.6 63 –1.9 –3.8 
0.6 2.2 1.6 42 –1.9 –3.8 
0.7 2.2 1.6 26 –1.9 –3.8 
0.8 2.2 1.7 14 –2.0 –3.9 
0.9 2.2 1.7 5 –2.1 –4.1 
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The changes in the calculated values of operating parameters result directly from changes 
in viscosity values due to the temperature distribution depending on the heat flux qc1. The 
simulations, in which qc1 was positive, i.e. in which heat was supplied to the lubricating oil from 
the shaft surface, in a non-intuitive manner, resulted in a reduction of the average oil 
dimensionless temperature in the lubrication gap, as shown in Fig. 2a. The heat transfer from the 
lubricating oil to the surface of the shaft, caused that the average dimensionless temperature in the 
lubrication gap was higher than in the case when the heat flux qc1 = 0.0. 
 

 

Fig. 2. The average oil temperature in the bearing lubrication gap, for the investigated values of heat flux  
exchanged with the shaft surface, at the relative eccentricities λ = 0.1-0.9 

 
The considered case of stationary lubrication is characterized by constancy of all parameters 

with respect to time; therefore, the total heat supplied on the surface of the shaft and generated as 
a result of dissipation inside the lubricating oil, must be equal to the value of heat flowing out of 
the lubrication gap. In the adopted model, this can only take place at the bearing sleeve. The more 
heat comes from the shaft surface, the more of heat must flow to the sleeve surface. Assuming 
a stationary process, a constant value of the thermal conduction coefficient of the oil and 
a constant distribution of the lubrication gap height, the only parameter influencing the modelled 
constant heat flux is the oil-calculated temperature. In particular, the average temperature of the oil 
layer at the bearing sleeve is shown in Fig. 2b. 

In the case when the value of the heat flowing from the lubricating oil to the surface of the 
shaft is greater than the heat generated as a result of dissipation, then for the assumed model, the 
heat must flow from the surface of the sleeve. This will happen, if the temperature at the sleeve 
surface is higher than the constant temperature at the shaft surface, hence the average values 
of dimensionless temperatures in the lubrication gap and at the sleeve surface are greater than 1. 
 
4. Conclusions 
 
1. The adopted hydrodynamic lubrication model can be used for stationary lubrication of the 

conical slide bearings, when a constant temperature and heat flux at bearing shaft surface 
are known. 

2. Assuming that the heat flows into the oil gap from the bearing shaft, cause an increase in the 
calculated values of load carrying capacities and friction forces, while reduces the coefficient 
of friction, because the average temperature of the oil in the lubrication gap decreases, which 
increases the viscosity; the reverse situation arises, when the heat flows out of the lubrication 
gap to the surface of the bearing shaft. 

3. Increasing the amount of heat flowing from the lubricating gap to the shaft, from qc1 = –0.5 [1] 
to qc1 = –1.0 [1], was not as significant as the case, when the amount of heat flowing into the 
oil from the shaft was increased from qc1 = 0.5 [1] to qc1 = 1.0 [1]. 

a) b) 
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4. The use of analytical solutions of simplified equations of momentum and energy causes, that in 
simulations, there is no need numerically solve systems of equations, in order to determine the 
components of velocity vector and temperature values. 
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