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Abstract 
The article discusses the method of modelling of the helicopter main rotor aerodynamic loads during steady state 

flight and manoeuvres. The ability to determine these loads was created by taking into account the motion of each 
blade relative to the hinges and was a result of the applied method of aerodynamic loads calculating. The first part of 
the work discusses the basic relationships that were used to build the mathematical model of helicopter flight. The 
focus was also on the method of calculating of the aerodynamic forces generated by the rotor blades. The results 
of simulations dedicated to the "jump to hover" manoeuvre were discussed, showing the possibilities of analysing 
aerodynamic loads occurring in unsteady flights. The main rotor is considered separately in an “autonomous” way 
and treated as a source of averaged forces and moments transferred to the hub. The motion of individual blades is 
neglected, and their aerodynamic characteristics are radically simplified. The motion of individual blades is 
neglected, and their aerodynamic characteristics are radically simplified. This can lead to significant errors when 
attempting to model dynamic helicopter manoeuvres. The more complex model of helicopter dynamics is discussed.  
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1. Introduction

A large number of moving components of the main rotor and the tail rotor [6, 15, 18, 20, 22, 
23] means that the mathematical model describing the helicopter's motion should take into account
a sufficient number of degrees of freedom to obtain possibly full and complete description of its 
behaviour in different phases of flight as a result of the analysis. In addition, the complex nature of 
the flow around the rotor blades, variable even in steady flight conditions, makes it difficult to map 
all aerodynamic phenomena occurring during flight [1-4, 7-8, 11, 12, 13-20]. 

Therefore, when modelling helicopter motion, motions of its moving parts are usually not 
taken into account. The rotor is considered separately in an “autonomous” way and treated as a 
source of averaged forces and moments transferred to the hub. The motion of individual blades is 
neglected, and their aerodynamic characteristics are radically simplified. This can lead to 
significant errors when attempting to model dynamic helicopter manoeuvres. 

The more complex model of helicopter dynamics is discussed below, which eliminates the 
need for multiple simplifications. Thanks to the simultaneous analysis of the helicopter motion in 
space and the motions of the blades relative to the hinges, it was possible to determine the 
temporary forces acting on them and on the helicopter hub and fuselage. The applied method of 
calculating of these forces allows you to give up many simplifications and to take into account 
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various aerodynamic phenomena, such as dynamic stall. The developed simulation model enables 
simultaneous analysis of helicopter dynamic manoeuvres and assessment of load variability acting 
on its key structural elements. Similar models of helicopter motion dynamics differing in the 
degree of simplification are described, among others in [5, 6, 9-14, 21]. 
 
2. Description of the equations of motion 
 
Coordinate systems 

The following right-handed rectangular coordinate systems shown in Fig. 1 are used in the 
analysis: 
Ogxgygzg – Earth-fixed coordinate system, 
Oxkykzk – fuselage-fixed coordinate system, 

""" zyPx  – hub-fixed coordinate system,  
'''
iiiHi zyxP  – flapping hinge coordinate system,  

iiiVi zyxP  – lag hinge coordinate system,  
Osoxsoysozso – tail rotor hub coordinate system, 
Osoxsiysizsi – tail rotor blade coordinate system. 

The conversion of vector components between these systems is performed using the 
transformation matrix shown in [11, 12]. 
Position vectors 

To determine the equations of motion, the following position vectors are defined in Fig. 2: 
h – vector determining the position of the hub centre P in relation to the fuselage mass centre  
  (the origin of the system Oxkykzk), 
r" – vector defining the position of the hub element relative to the centre of the hub P, 
R" – vector determining the position of the hub element relative to the fuselage mass centre, 
lH  – vector determining the position of the flapping hinge (PH) relative to the hub centre, 
r' – vector defining the position of the connector element relative to the flapping hinge, 
R' – vector determining the position of the connector element relative to the fuselage mass centre, 
lV  – vector determining the position of the lag hinge (PV) relative to the flapping hinge, 
r – vector defining the position of the blade element relative to the lag hinge, 
R – vector defining the position of the blade element relative to the fuselage mass centre. 
 

 
Fig. 1. Coordinate systems used to analyse helicopter motion dynamics 
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Fig. 2. Position vectors of blade, connector and hub elements (index “i” is omitted) 

 
2.1. The force equation of motion 
 

Equation of linear motion of the fuselage mass centre has the form: 

 sow
c

k dt
dm TRFV

++= ,
  

(1) 

where: mk – fuselage mass, Vc – the absolute velocity of the fuselage mass centre, which in the 
Oxkykzk system has the components Vc = [U,V,W]T, F – the sum external forces acting on the 
fuselage,  Rw – the force from the main rotor , Tso – the tail rotor thrust. 
Equation of the i-th blade element motion: 

 iiiii ddrdm AqW += , (2) 

where: dmi – the mass of the element with dri length, Wi – the absolute acceleration of the element, 
igiaiii drdr )( qqq +=  – the vector of external forces (a – aerodynamic and g – gravitational) acting 

on the element, dAi – the reaction of neighbouring elements. 
Similar equations apply to the connector element of the i-th blade and the hub element: 

 '''''
iiiii ddrdm AqW += , (3) 

 """" AFW dddm += . (4) 

Integrating equation (2) from the PVi lag hinge to the end of the blade (for all k blades), 
equation (3) from the PHi flapping hinge to the PVi lag hinge (for all connectors) and equation (4) 
by the volume of the hub, then adding results of these integrations to equation (1), the equation of 
the forward helicopter motion is obtained: 
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(5) 

where T is the vector of external forces acting on the rotor: 
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(6) 

B is the tip loss factor [3]. 
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2.2. The moment equation of motion 
 

Equation of angular motion of the fuselage has the form: 

 sowdt
d MMMK ++= ,

 
(7) 

where: M – the moment of external forces acting on the fuselage, Mw – the moment of the main 
rotor reaction, Mso – the moment produced by the tail rotor, K – the angular momentum of the 
fuselage.  

The equation of moment's equilibrium with respect to the fuselage mass centre is obtained by 
adding to equation (7) sides of: 
1. equation (2) multiplied vectorly by the position vector Ri and integrated from the lag hinge PVi  to 

the blade end (for all blades); 
2. equation (3) multiplied vectorly by the position vector '

iR  and integrated from the flapping hinge 
PHi to the lag hinge PVi (for all connectors); 

3. equation (4) multiplied vectorly by the position vector "R  and integrated over the hub volume. 
You get: 
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(8) 

MT is the moment of external forces acting on the rotor relative to the fuselage mass centre: 
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(9) 

The equation determining the angular motion of the main rotor relative to the shaft axis is obtained 
by multiplying vectorly equations (2), (3) and (4) respectively by vectors determining the position of 
the elements of the blade, the connector and the hub relative to the hub centre P, adding the results of 
multiplication by sides and projecting the result of this summation onto the "Pz axis. The result is: 
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(10) 

where: Mrk means the moment of fuselage reaction equal to, under normal flight conditions, the 
moment from the propulsion system Mrk = Mps, and MP is the moment of external forces relative 
to the hub centre P. Its "Pz axis projection is defined as follows: 
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(11) 

In a similar way, using equations (2) and (3), the equation of motion of the i-th blade with 
respect to the flapping hinge axis PHi is obtained: 

 [ ] [ ] [ ] [ ] ''''
''')(
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i yyP
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yiiiVi dmdm βMMWrWrl +=×+×+ ∫∫ .

 
(12) 

Subscript [ ] '
iy  

means projection onto the axis '
iHi yP  of this hinge. 

[ ] '
iHi yPM  is the projection of moments of external forces relative to the i-th flapping hinge '

iHi yP  
onto the axis of this hinge: 
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(13) 

and [ ] '
iyβM takes into account damping and stiffness in the flapping hinge (Fig. 1): 

 [ ] iiy
kc

i
ββ βββ −−= 

'M .
 

(14) 

Based on equation (2), the equation of the angular motion of the i-th blade in relation to the lag 
hinge axis PVi was determined: 

 [ ] [ ] [ ]
iiVi

Vi
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R

P
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(15) 

The subscript [ ]
iz  symbolizes the projection onto the PVizi axis of this hinge. 

[ ]
iVi zPM
 
is the projection of the moments of external forces relative to the i-th lag hinge: 
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Vi
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(16) 

and [ ]
izζM  takes into account damping and stiffness in the lag hinge (Fig. 1): 

 [ ] iiz
kc

i
ζζ ζζζ −−= M .

 
(17) 

Equations (5), (8), (10), (12) and (15) describe the spatial motion of a single-rotor helicopter, 
taking into account the rotational motion of the rotor and the motion of individual blades about 
hinges PHi and PHi. 
 
2.3. The final form of the equations of motion 
 

After supplementing the above equations with kinematic relations that allow calculating the 
rate of change of angles Ψ, Θ and Φ determining the angular position of the helicopter relative to 
the inertial system and the linear velocity in the inertial system: 
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 (18) 

and considering that: 

 i
i

dt
d ββ

= , i
i

dt
d ζζ

= , d
dt
ψ

ω= , (19) 

the 14+4 nonlinear ordinary differential equations were obtained, which can be written as: 

 ),,(),(),( sxfxBxxA ttt =+ , (20) 

where x is a flight parameter vector: 
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T
gggiiii zyxRQPWVU ],,,,,,,,,,,,,,,,,[ ΨΘΦ= ψζβζβω x , 

s is the control vector, which consists of the angles determined with the swash plate and the 
collective pitch angle of the tail rotor: 

T
socs ],,,[ 0 ϕθθθ=s . 

The vector f represents forces and moments acting on the fuselage and the helicopter's moving 
parts taken into account in the model, as well as the right sides of (18) and (19). 
The effective solution of these equations requires the calculation of the absolute velocities and 
absolute accelerations of individual structural elements. For example, for a blade element we have: 
– the absolute velocity: 

 iiiViiiViHiici rζrlβrllωRΩVV ×++×+++×+×+=  )()( , (21) 

where Vc is the helicopter mass centre velocity, Ω – the fuselage angular velocity  
The last three components in (21) give the relative velocity: 

 iiiViiiViHiri rζrlβrllωV ×++×+++×=  )()( , (22) 

ω – the angular velocity of the main rotor, iβ  – the flapping motion angular velocity, iζ  – the 
lagging motion angular velocity  
– the absolute acceleration: 

 ( ) ririii
ri

iic
i

i dt
d

dt
d

dt
d VΩVζβωVRΩΩRΩWVW ×+×++++××+×+== 2')(  . (23) 

 
3. Forces and moments acting on the helicopter 
 

The helicopter is subjected to aerodynamic forces and moments (subscript a) and gravitational 
(subscript g) and produced by the tail rotor (subscript so). Following these indications, the 
following can be written: 
– the vector of external forces acting on the fuselage: 

 soga TFFF ++= , (24) 

– the vector of external forces acting on the main rotor: 

 ga TTT += , (25) 

– the moment of external forces acting on the rotor relative to the fuselage mass centre: 

 TgTaT MMM += , (26) 

– the moment of external forces acting on the fuselage:  

 soga MMMM ++= , (27) 

– the moment of external forces relative to the rotor shaft axis Pz" : 

 PgPaP MMM += , (28) 

– the moment of external forces relative to the the axis "
iHi yP  of the i-th flapping hinge: 

 gPaPP HiHiHi
MMM += , (29) 
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– the moment of external forces relative to the axis iVi zP of the i-th lag hinge: 

 gPaPP ViViVi
MMM += . (30) 

 
3.1. Aerodynamic forces and moments 
 

Calculation of aerodynamic forces and moments acting on the fuselage is done based on 
knowledge of aerodynamic coefficients, using classic expressions: 
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SWN, R – rotor area and radius, respectively. 
All aerodynamic forces and moments produced by blades were calculated by integrating the 

appropriate expressions along their spans. For example, the aerodynamic moment relative to the 
flapping hinge is: 

 [ ] ∫∫ −+−=
Vi

HiVi
iHi

P

P
iizai

BR

P
iiiVzaiyaP drrqdrrlq ''')cos(' ζM ,

 
(33) 

and the aerodynamic moment relative to the lag hinge: 
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Vi
iVi

drqrM ,
 

(34) 

B is the tip loss factor of the main rotor. qxai i qzai are the aerodynamic loads of the blade 
element. According to Fig. 3, they are equal to: 

 ** sincos αα xazazai dPdPq += ,       ** sincos αα zaxayai dPdPq −= , (35) 

dPza i dPxa are components of aerodynamic forces calculated on the basis of classic expressions: 
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Vρ

= ,        )(
2

2

rbCdP xaxa

Vρ
= , (36) 

where b(r) is the aerodynamic chord of the blade. 
 

 
Fig. 3. Aerodynamic loads of the rotor blade element 
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The calculation of these forces requires knowledge of the aerodynamic characteristics of the 
airfoil in the full range of the angle of attack 0-360o and components of the local velocity vector. 
This vector is the sum of the velocity resulting from the blade motion (21) and the induced 
velocity vector: 
 indi υVV += . (37) 

The induced velocity can be modeled in different ways. In simulations, this velocity was 
calculated based on the Biot-Savart law, taking into account the spatial position of vortices 
(Fig. 4), which were generated by blades at earlier moments of time: 

 34 l
lsυ ×Γ= dd ind π

.
 

(38) 

 

 
Fig. 4. Determination of the induced speed from the vortex element 

 
The rotor blades are controlled by changing the blade angle ϕ shown in Fig. 3 using the swash 

plate mechanism. It can be described as follows: 
 )(cossin0 iriicis rϕκβψθψθθϕ ++−−= . (39) 

This formula includes swash plate control angles θ0, θs, θc, flapping compensation iκβ  and 
blade geometric torsion )( ir rϕ . 
 
3.2. Mass forces and moments 
 

The mass forces and moments occurring in formulas (24)-(30) are equal to: 
– the helicopter weight:  
 gF mg = , (40) 

– the moment of fuselage mass forces relative to its mass centre: 
 0=gM , (41) 

– the moment of mass forces acting on the rotor relative to the fuselage mass centre: 
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(42) 

The projection of mass forces, acting on the rotor, onto shaft axis "Pz  is calculated similarly to 
(42) replacing the position vectors R with vectors specifying the position of the considered 
elements, relative to the hub centre – e.g. for the blade element (lH+lV+r). The moment of mass 
forces relative to the axis of flapping hinge must take into account the position vectors of the 
connector and the blade elements relative to this hinge – e.g. for the blade element (lV+r), while 
the moment relative to the flapping hinge  – the vector r. 
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4. Exemplary results of calculations 
 

The developed model of the helicopter motion was originally used to model various flight 
states. The focus was on simulation of steady and manoeuvring flights by analysing helicopter 
motion in space and blade oscillations. The simulation software also gives the opportunity to 
monitor a number of parameters that are subject to dynamic changes both during steady state flight 
and during manoeuvres. For example, it is possible to assess how change: – the angles of attack in 
the plane of the rotor, the forces generated by blades and transferred to the hub. 

Figures 5-8 show the basic flight parameters during the jump to the hover manoeuvre. To 
check the correctness of helicopter stabilization by an autopilot, it was assumed that for the first 10 
seconds of flight a horizontal flight at a speed of 250 km/h is performed. Then begins the manoeuvre 
consisting in a rapid increase in flight altitude (Fig. 5) with simultaneous deceleration of speed 
(Fig. 6). During the manoeuvre, the fuselage nose is strongly upright (Fig. 7). The maximum value 
of the pitch angle Θ is about 60o. Due to the mutual coupling of the longitudinal and lateral motions 
of the helicopter, rolling and yawing motions are also observed (angles Φ and Ψ). Blade motions 
relative to hinges are also modelled. They are shown in Fig. 8. It can be seen that by the time the 
manoeuvre began, the oscillations are stable. However, during manoeuvre their amplitudes change 
quickly. These curves allow you to assess whether there is a risk of blades hitting the swing limiters. 

As it was mentioned earlier, it is also possible to obtain “maps” of distributions, e.g. angles 
of attack. They are shown in Fig. 9-12 for the following main rotor revolutions numbers: 43, 48, 52, 
65. The corresponding fuselage pitch angles are shown in Fig. 7. Revolution number 43 refers to the 
conditions of the flight determined before the manoeuvre, and further successive phases of the 
manoeuvre. Fig. 9 shows the reverse flow zone. In other regions of the main rotor, the angles of 
attack have moderate values. During the manoeuvre, areas of large angles of attack appear (Fig. 10 
and 11), where the critical value is exceeded. After the manoeuvre (Fig. 12), the values of the angles 
of attack in the entire plane of the rotor disc return to the operating range. Due to the deceleration of 
flight speed, the reverse flow area also disappears. Fig. 13 illustrates the distribution of attack angles 
along the blade on azimuths 0o, 90o, 180o, 270o for revolution 48. For the returning blade (270o), no 
large negative values of this angle (reverse flow area) are shown. Visible strong local changes of the 
curves are the result of blade cutting through the tip vortices that were previously generated by all 
blades. Fig. 14 shows the change in the attack angles of selected blade radii during the manoeuvre. 
It confirms that in certain phases of the flight the critical value was exceeded (approx. 18o). 

Figures 15-18 show “maps” of distribution of lift generated by blades for the same rotor 
revolutions. For the revolution 43, the effect of the reverse flow around the returning blade is 
visible. Fig. 16 and 17 confirm that cutting by the blades of the tip vortices leads to strong local 
changes of the angle of attack and the generated lift, while exceeding the critical angle of attack 
causes the decrease of the lift. Deceleration of the helicopter leads to the disappearance of the 
reverse flow zone (Fig. 18). Vortex cutting leads to strong disturbances in lift distribution along 
the blade, which results from the curves shown in Fig. 19. This applies in particular to the lapping 
blade (90°). Such dynamic changes can lead to strong blade structure stresses. Fig. 20 shows how 
the lift force changes for the three selected blade radii during the manoeuvre. Its analysis allows 
determining the maximum lift values. This can be useful in strength analysis. 
 

5. Summary 
 

The helicopter motion dynamics model, discussed in the article, was originally developed for 
the needs of flight simulation, provides great opportunities for analysing aerodynamic and mass 
loads occurring during shunting flights. Due to the fact that it is possible to model real flight 
conditions and real manoeuvres, and due to the omission of fundamental simplifications in the 
field of aerodynamics, the obtained results are more reliable than, e.g. obtained during the analysis 
of the work of the isolated rotor. 
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Fig. 5. Flight trajectory Fig. 6. Helicopter flight velocity 
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Fig. 7. Fuselage position angles Fig. 8. Flapping and lagging angles 

 

  
Fig. 9. Angles of Attack – rev. 43 Fig. 10. Angles of Attack – rev. 48 

 

 
 

Fig. 11. Angles of Attack – rev. 52 Fig. 12. Angles of Attack – rev. 65 
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Fig. 13. A-o-A distribution along blades  Fig. 14. Changes of A-o-A for selected radii 

 

  
Fig. 15. Lift – rev. 43 Fig. 16. Lift – rev. 48 

 

  
Fig. 17. Lift – rev. 52 Fig. 18. Lift – rev. 65 

 

  
Fig. 19. Lift distribution along blades Fig. 20. Changes of lift for selected radii 
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