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Abstract 

The workability of a transport system is associated with performance and operational reliability. Operational 
reliability provides a measure of the probability that a transport system will realize transport process as intended. 
Performance reliability is an adequacy measure of transport process realization under specific environmental and 
traffic conditions. Transport system can be modelled as repairable, multistate, non-homogenous rectangular or 
dendrite system. This article provides the Markov and semi Markov models for estimation of the operational and 
performance reliability of city transport system. The system is semi homogenous it means that serial subsystems have 
the same reliability function. The reliability of any serial subsystem is exponential. The distribution of the repair time 
is any probability distribution. In case where the probability distribution of the repair time is exponential, the Markov 
process is used to construct simulation model. The simulation model was applied at Microsoft Excel. Many stochastic 
models in engineering, logistic and even finance or insurance are setup in a spreadsheet for simulation. The semi 
Markov model of the multistate reliability of repaired system is applied to the street system. The embedded Markov 
chain was used to count stationary probabilities. The possibility of application of the results is illustrated by an 
example for the systems with rectangular or dendrite shaped accordingly, consist of three types of elements. 
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1. Introduction

An efficiently operating transport system is the definition of a well-functioning city. 
Infrastructure connections between motion generators have an inherent impact on getting around 
the city. Reliability of communication routes is a definition of what period movement participants 
can transport from the starting point to the final point. Transportation systems play an important 
role in society, economic, national defence and others. They are classified as critical infrastructure 
systems because of the far-reaching effects of disruptions on these systems. Analysing the 
reliability on various elements of transportation systems such as infrastructure means of 
transportation were carried out since the mid-twentieth century [5, 6]. 

In the article, as a transport system, we mean part of a road or urban transport network. System 
states, due to its operational reliability, are determined by the level of traffic obstructions, that is: 
– state “0” for level of service A and B,
– state “1” for level of service C,
– state “2” for level of service D and E,
– state “3” for level of service F.

In the case of modelling at the level of constituent communication lines, we assume that:
– the system is built of s series subsystems,
– the system has finite number of components,
– lifetime of any component c of a series subsystem is exponential, with parameter λc,
– repair time has the distribution G(t), with finite expected value equal mr,
– life times of components and repair time are stochastically independent,
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– the components are repaired accordingly to the sequence they failed,
– only one component can be repaired at the same time

2. The operational reliability Markov and semi-Markov models

The system with finite or countable number of states can be described by semi-Markov process 
if it fulfils the following condition:  
the probability that the system, which is in state i, goes to the state j and will stay in this state for 
time t0 is independent of the process history before the time t and actual time t, [3].  

Let X(t) will be the stochastic process with finished or countable set of states S = {0, 1, ...}, the 
beginning state x0, Markov chain X(n) – state of the process after n-th change and random 
variables Tk the time in which the process X(t) stay in state in state k – 1, k = 1, 2, ... 

The process X(t) is the semi-Markov process, [2, 3, 9] if for any moments 0 ≤ 𝑡𝑡1 <
𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛−1 < 𝑡𝑡; i, i1, ..., k, j ∈ S and n > 1 we have 

𝑃𝑃({𝑇𝑇𝑛𝑛 < 𝑡𝑡,𝑋𝑋(𝑛𝑛) = 𝑗𝑗/𝑋𝑋(0) = 𝑖𝑖,𝑇𝑇1 = 𝑡𝑡1, . . . ,𝑋𝑋(𝑛𝑛 − 2) = 𝑘𝑘,  𝑇𝑇𝑛𝑛−1 = 𝑡𝑡𝑛𝑛−1,𝑋𝑋(𝑛𝑛 − 1) = 𝑖𝑖}) 

=  𝑃𝑃({𝑇𝑇𝑛𝑛 < 𝑡𝑡,𝑋𝑋(𝑛𝑛) = 𝑗𝑗/ 𝑋𝑋(𝑛𝑛 − 1) = 𝑖𝑖}) 
and 

𝑃𝑃({𝑇𝑇𝑛𝑛 < 𝑡𝑡,𝑋𝑋(𝑛𝑛) = 𝑗𝑗/ 𝑋𝑋(𝑛𝑛 − 1) = 𝑖𝑖})  =  𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡),𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 1,2, . . . . 

Functions Qij(t) can be represent as follows  

𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡)  =  𝑝𝑝𝑖𝑖𝑖𝑖 𝐹𝐹𝑖𝑖𝑖𝑖(𝑡𝑡), 

where 
– the quantities pij are the transitions probabilities of the embedded Markov chain X(n),
– the functions Fij(t) are the conditional distributions that the process X(t) stays in state i if the

next jump will be to the state j.
The operational reliability model of the system is shown in the graph Fig. 1.

Fig. 1. A graph of the system operational reliability 

Using the theorems presented at [3] we obtain that: 
– if any Fij(t) is not the exponential distribution then the process X(t) is not Markov,
– if all probability distribution are exponential then the process X(t) is Markov,
– the set {0, 1, 2, 3} is the state space of the Markov chain of the process X(t),
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– because the number of states is finite then there is the embedded ergodic Markov chain of the 
process X(t), 

– using the methods presented in [9], we have the formulas of stationary probabilities of 
embedded Markov chain, 

– 𝑝𝑝0 = 1 − (𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝31). 
The system of stationary equations describing the process of change of operational reliability 

states is in the form: 

 �

−𝜆𝜆01𝑝𝑝0 − 𝜆𝜆02𝑝𝑝0 + 𝜆𝜆30𝑝𝑝3 + 𝜆𝜆10𝑝𝑝1 + 𝜆𝜆20𝑝𝑝2 = 0
−𝜆𝜆13𝑝𝑝2 − 𝜆𝜆10𝑝𝑝1 − 𝜆𝜆12𝑝𝑝1 + 𝜆𝜆01𝑝𝑝0 + 𝜆𝜆20𝑝𝑝2 = 0
−𝜆𝜆23𝑝𝑝2 − 𝜆𝜆20𝑝𝑝2 − 𝜆𝜆21𝑝𝑝2 + 𝜆𝜆02𝑝𝑝0 + 𝜆𝜆21𝑝𝑝2 = 0

−𝜆𝜆30𝑝𝑝3 + 𝜆𝜆03𝑝𝑝0 + 𝜆𝜆13𝑝𝑝1 + 𝜆𝜆23𝑝𝑝2 = 0

  (1) 

where: 
pk  – indicate the limit probability for the state k, k = 0, 1, 2, 3, 
λjk – means the intensity of the transition from state j to state k, j, k = 0, 1, 2, 3. 

By replacing the last equation with the normalizing condition, (1), we obtain the matrix 
equation of the form, [3, 4]: 

 �

−𝜆𝜆01 − 𝜆𝜆02
𝜆𝜆01
𝜆𝜆02
1

𝜆𝜆10
−𝜆𝜆13 − 𝜆𝜆10 − 𝜆𝜆12

𝜆𝜆21
1

𝜆𝜆20
𝜆𝜆20

−𝜆𝜆23 − 𝜆𝜆20 − 𝜆𝜆21
1

𝜆𝜆30
0
0
1

� �

𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3

� = �
0
0
0
1

� . (2) 

Assuming that the ratio of the intensity of λ02 to the intensity of λ01 is p and the remaining 
intensities are equal, we obtain from the system of equations (2), [7]: 

 𝑝𝑝0 = 1
2+𝑝𝑝

, 𝑝𝑝1 = 1
2(2+𝑝𝑝) , 𝑝𝑝2 = 1+3𝑝𝑝

8(2+𝑝𝑝) , 𝑝𝑝3 = 1
2+𝑝𝑝

. (3) 
 
Example 1. Markov model, three reliability states 

Consider the system where all probability distribution are exponential and a system can pass 
through only three states: 0 (full operational reliability), 1 (reduced operational reliability) and 
2&3 (complete operational unreliability-failure). In spite of the simplicity of the model, 
remarkable results are obtained concerning the behaviour of the system according traffic changes. 
The transition graph for the process is shown in Fig. 2, where: 
– 0 – state of full operational reliability, 
– 1 – state of reduced operational reliability, 
– 2&3 – state of complete operational unreliability (failure). 

 

 
Fig. 2. Transition graph of the system operational reliability model, Markov three state case 

 
The Chapman-Kolmogorov forward equations are given by: 

, 
, 
, 

, 
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𝑝𝑝′0(𝑡𝑡) = −(𝜆𝜆 + 𝛽𝛽)𝑝𝑝0(𝑡𝑡) + 𝜇𝜇𝑝𝑝1(𝑡𝑡), 

𝑝𝑝′1(𝑡𝑡) = −(𝜇𝜇 + 𝜈𝜈)𝑝𝑝1(𝑡𝑡) + 𝜆𝜆𝑝𝑝0(𝑡𝑡), (4) 

𝑝𝑝′2&3(𝑡𝑡) = 𝛽𝛽𝑝𝑝0(𝑡𝑡) + 𝜈𝜈𝑝𝑝1(𝑡𝑡) 

and the operational reliability function Ror(t), according (4), is 

𝑅𝑅𝑜𝑜𝑜𝑜(𝑡𝑡) = 1 − ∫ [𝛽𝛽𝑝𝑝0(𝑡𝑡) + 𝜈𝜈𝑝𝑝1(𝑡𝑡)]𝑡𝑡
0 𝑑𝑑𝑑𝑑. (5) 

We assume that at time zero system is in state 0. Using the Laplace transform methods to 
equations (4-5), we have:  

𝑝𝑝0(𝑡𝑡) = 𝑠𝑠1+𝜇𝜇+𝜈𝜈
𝑠𝑠1−𝑠𝑠2

𝑒𝑒𝑠𝑠1𝑡𝑡 − 𝑠𝑠2+𝜇𝜇+𝜈𝜈
𝑠𝑠1−𝑠𝑠2

𝑒𝑒𝑠𝑠2𝑡𝑡, 

𝑝𝑝1(𝑡𝑡) = 𝜆𝜆
𝑠𝑠1−𝑠𝑠2

𝑒𝑒𝑠𝑠1𝑡𝑡 − 𝜆𝜆
𝑠𝑠1−𝑠𝑠2

𝑒𝑒𝑠𝑠2𝑡𝑡, (6) 

𝑝𝑝2&3(𝑡𝑡) = 1 + (𝑠𝑠1+𝜇𝜇+𝜈𝜈)𝛽𝛽+𝜆𝜆𝜆𝜆
(𝑠𝑠1−𝑠𝑠2)𝑠𝑠1

𝑒𝑒𝑠𝑠1𝑡𝑡 − (𝑠𝑠2+𝜇𝜇+𝜈𝜈)𝛽𝛽+𝜆𝜆𝜆𝜆
(𝑠𝑠1−𝑠𝑠2)𝑠𝑠2

𝑒𝑒𝑠𝑠2𝑡𝑡, 

where: 

( )
( )1 2

1 4s ( ) 1
2

λ µλ β µ ν λ β µ ν
λ β µ ν

 ⋅ = − + + + − + ⋅ − − + +
− − + +  

, 

( )
( )2 2

1 4s ( ) 1
2

λ µλ β µ ν λ β µ ν
λ β µ ν

 ⋅ = − + + + + + ⋅ − − + +
− − + +  

. 

Example 2. Semi-Markov model, four reliability states, simulation approach 
We suppose, that P(0), P(1), P(2), P(3) mean the probability of being in the respective states of 

the system operational reliability model, Fig. 1.  
We define the stochastic process ),(

1+nniin Ti  is a non-homogeneous Markovian renewal process, 
where ([2-5]): 
n – number of the iterations, n ∈ N,  
S – the set of states, 
Tij – the random variable represents the transition’s time between the states i and j, 
in – a random variable with the set of states: S = {SB, SZB, SNB, C} representing the state at the 

n-th transition, 
{in : n ∈ N} – the sequence of the realizations of the embedded non-homogeneous Markov 

chain, {ξn : n ∈ N}, 
}:{

1
Nn T

nnii ∈
+

– a sequence of the independent random variables which represents the time of the
transition from state in ∈ S to in+1 ∈ S,

P(t) = [pij(t)] – the transition matrix at the time t of the embedded non-homogeneous Markov 
chain. 

,

1000
)(0)(0
)()(0)(

0)()(0

3432

242321

1312



















=
tptp
tptptp

tptp

P (7) 
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Let assume that i ∈ S is the beginning state of the Semi-Markov process. The next state of the 
process, j ∈ S, is obtained by the draw according to the distribution given in i-th line of the matrix 
P, i.e. based on the following formulae, [3]:  

 }:min{ 1 irir yuyrj ≤<= − , (8) 

where: 

,
0
∑
=

=
j

a
iaij py  .00 =ip  

It is possible to generate the realizations of the independent random variable Tij by 
transforming the realizations of the copies the random variables u with uniform distribution. Based 
on this fact, the compound ([3]): 
– for the exponential distribution is given as: 

 ),1ln(1 uTij −−=
λ

 (9) 

– for the Weibull distribution is given by: 

 ,)1ln(1
1
α

λ






 −−= uTij  (10) 

where u is the random variable with uniform distribution U(0,1), λ > 0, α > 0. 
Algorithm for finding of the characteristics of the system’s operational reliability: 

– chose the beginning state i, 
– generate the realization the random variable u with uniform distribution u(0,1), 
– determine the state j according to formulas,  
– generate realization of the random variable tij using the formulas (11-12),  
– evaluate the time to the moments to achieve the 2 state, 
– evaluate the time to the moments to achieve the 3 state, 
– estimate the characteristics such that histogram, the mean values, the second moments and the 

standard deviations. 
 

 
Fig. 3. An example of simulation results, starting state “2” 

231



L. Smolarek, M. Ziemska 

Fig. 4. An example of simulation results, starting state ”0” 

Example 3. Semi-Markov model, rectangular system 
The system is built of parallel series subsystems connected on the input and output ends. All 

series subsystems have the same type of reliability function with finite expected value (the serial 
subsystems are homogenous). The state of the system is equal to the number of not broken series 
subsystems. The examples of such system are shown at Fig. 1 and Fig. 2 

Fig. 5. A rectangular example of the system model 

where: 
– “I1” intersection type 1,
– “I2” intersection type 2,
– ..............................,
– “L” section between intersections.

We assume that:
– the system is in state k if only k series subsystems are in workable state and others are broken,
– X(t) – the number of working series subsystems (components) at time t,

P = (P0, P1,...,Ps) – stationary, ergodic probabilities of stochastic process X(t),
– tn – the moment in which the n-th repair is ended,
– ζn – the number of working series subsystems before the time tn, it is the embedded Markov

chain of the process X(t),
– 𝒑𝒑� = (𝑝̂𝑝0, 𝑝̂𝑝1, … , 𝑝̂𝑝𝑠𝑠) – stationary probabilities of embedded Markov chain ζn.
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Because the finite set {0, 1, 2, ..., s–1, s} is the state space of the process ζn then the process is 
ergodic. 

The homogenous Markov chain ζn has the transition probabilities given by formulas 

 






















=⋅−−⋅−








=+≤⋅−−⋅−






 +

= ∫

∫

∞
−

∞
+−

iother for0

1-sifor       dG(t)t]}λexp[{1t]}λ{exp[
j
i

2-s0,1,...,i 1,ijfor dG(t)t]}λexp[{1t]}λ{exp[
j
1i

p
0

jij

0

1jij

ij

.

 (11)

 
The stationary probabilities 𝒑𝒑� = (𝑝̂𝑝0, 𝑝̂𝑝1, … , 𝑝̂𝑝𝑠𝑠) of embedded Markov chain ζn can be find 

using the following formulas, [3, 7, 8]: 

 

𝑝̂𝑝0 = 1 − ∑ 𝑝̂𝑝𝑘𝑘;  𝑝̂𝑝𝑘𝑘+1 = 𝑠𝑠𝑝𝑝�𝑘𝑘
(𝑘𝑘+1)(𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟+𝑝𝑝�𝑠𝑠−1) 𝑠𝑠

𝑘𝑘=1

𝑝̂𝑝𝑘𝑘 =  ∑ (−1)𝑖𝑖−1 � 𝑖𝑖𝑘𝑘�
𝑠𝑠𝐶𝐶𝑖𝑖−1
𝑖𝑖

𝑠𝑠
𝑖𝑖=1  

∑ �
𝑠𝑠−1
𝑗𝑗 �𝐶𝐶𝑗𝑗

−1𝑠𝑠−1
𝑗𝑗=𝑖𝑖−1

(1+𝑠𝑠𝑚𝑚𝑟𝑟𝜆𝜆)∑ �𝑠𝑠−1𝑗𝑗 �𝐶𝐶𝑗𝑗
−1𝑠𝑠−1

𝑗𝑗=0
;  𝐶𝐶0,𝐶𝐶𝑗𝑗 = ∏ 𝐺𝐺∗(𝑤𝑤𝑚𝑚𝑟𝑟)

1−𝐺𝐺∗(𝑤𝑤𝑚𝑚𝑟𝑟)
𝑗𝑗
𝑤𝑤=1

 (12) 

where: k = 0, 1, ..., s. 
 
4. Summary 
 

The models of reliability of the system operation presented in the article can be used for 
estimation and forecasting in everyday practice. The methods can be useful for estimating selected 
operational reliability characteristics of the urban transport system. It is possible to extend the 
results to systems with other complex reliability structures. It is possible to obtain meticulous 
results using the above-described model based on input data such as traffic intensity, intensity on 
torsional relations, duration of green light (in the case of intersections with traffic lights), etc. The 
calculations presented in the article may be an indispensable component in the aspect of intelligent 
transport systems and more specifically modules related to event detection. The use of 
mathematical solutions is indispensable in defining limit states where urban traffic is defined by 
the free speed of moving vehicles in the urban transport network defined by a given infrastructure 
sequence. 
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