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Abstract 

In this article, the authors present the equations of the hydrodynamic theory for a slide bearing with parabolic-
shaped slide surfaces. The lubricating oil is characterized by non-Newtonian properties, i.e. an oil for which, apart 
from the classic oil viscosity dependence on pressure and temperature, also an effect of the shear rate is taken into 
account. The first order constitutive equation was adopted for considerations, where the apparent viscosity was 
described by the Cross equation. The analytical solution uses stochastic equations of the momentum conservation law, 
the stream continuity and the energy conservation law. The solution takes into account the expected values of the 
hydrodynamic pressure EX[p(ϕ,ζ)], of the temperature EX[T(ϕ,y,ζ)], of the velocity value of lubricating oil 
EX[vi(ϕ,y,ζ)], of the viscosity of lubricating oil EX[ηT(ϕ,y,ζ)] and of the lubrication gap height EX[εT(ϕ,ζ)]. It was 
assumed, that the oil is incompressible and the changes in its density and thermal conductivity were omitted. A flow 
of lubricating oil was laminar and non-isothermal. The research concerned the parabolic slide bearing of finite 
length, with a smooth sleeve surface, with a full wrap angle. The aim of this work is to derive the stochastic equations, 
that allow to determine the temperature distribution, hydrodynamic pressure distribution, velocity vector components, 
load carrying capacity, friction force and friction coefficient, in the parabolic sliding bearing, lubricated with non-
Newton (Cross) oil, including the stochastic changes in the lubrication gap height. The paper presents the results of 
analytical and numerical calculation of flow and operating parameters in parabolic sliding bearings, taking into 
account the stochastic height of the lubrication gap. Numerical calculations were performed using the method of 
successive approximations and finite differences, with own calculation procedures and the Mathcad 15 software. 
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1. Introduction

The operating parameters of a slide bearing depend on many factors and mainly on 
hydrodynamic pressure, temperature, dynamic viscosity of the lubricant [1-3, 5-7, 9, 10]. It is also 
important, whether the oil has Newtonian or non-Newtonian properties [1-3, 5, 6, 9, 10]. These 
values are influenced, among others, by the type of slide bearing and operating conditions 
(vibrations, turbulence, stationary or non-stationary lubrication, etc.). Some of these factors change 
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randomly (vibrations, surface roughness, loads). Some previous research efforts have been limited 
to consideration of the impact of stochastic changes in the bearing gap height on the pressure 
distribution [5, 6, 9]. This fact has become the aspiration of the authors to conduct tribological 
tests in a comprehensive approach, and consider stochastic changes in lubrication gap height, 
velocity and viscosity of lubricating oil, oil temperature, bearing load capacity, friction forces and 
coefficient of friction. 

Investigations of stochastic processes consist in selecting the most probable value of the 
considered parameter. For this purpose, the expected values of the gap height and viscosity 
function are determined. The expected value is then the most probable value of the height of the 
bearing gap or viscosity. This value is necessary to determine the lubrication parameters, in 
particular the hydrodynamic pressure, friction forces and coefficient of friction. The probabilistic 
description of the friction and lubrication process also requires the determination of standard 
deviations for the above-mentioned necessary conditions. 

The authors investigated the parabolic bearing with the full wrap angle. The flow of the 
lubricant in the gap is stationary, laminar and non-isothermal. 

The aim of this research is to investigate the impact of stochastic changes in lubrication gap 
height on the oil viscosity values and flow velocity, and on the hydrodynamic pressure, friction 
forces and friction coefficient. 
 
2. Stochastic height of the bearing lubrication gap 
 

A parabolic bearing gap, limited from one side to the surface of the bearing shaft, and the other 
to the surface of the bearing sleeve, is filled with lubricating oil with non-Newtonian properties. 
We assume a characteristic constant dimensional value of the height of the lubrication gap εo and 
dimensionless gap height function ε1 dependent on ϕ and on ζ1. This function is the sum of the two 
parts described by the formula (1) [10]:  

 1 1 1 1( , )[1 ( , , )]T o pε ε ε ε ϕ ζ δ ϕ ζ ξ= = + . (1) 

The symbol ε1p is the dimensionless gap height limited by nominally smooth bearing surfaces. 
The symbol ξ describes the random variable, which characterizes the roughness arrangement. The 
random changes in the gap height εT are caused by the stochastic distribution of peaks and valleys 
at bearing shaft and sleeve surfaces. The parameter δ1 is the dimensionless stochastic variable of 
corrections for the gap height. The corrections of random changes refer to the height of the gap εT, 
but the concern the apparent viscosity ηa, hydrodynamic pressure, temperature and other 
parameters.  

The geometry of the lubrication gap is shown in Fig. 1, when, the function describing its height 
without taking into account the misalignment, can be written in the following form: 

 ( )1 1p o p o cosε ε ε ε λ ϕ= = + . (2) 
 
3. Basic equations in parabolic coordinates 
 

The equation of momentum conservation, the equation of stream continuity and the equation 
of energy conservation will be written in a parabolic coordinate system ϕ, y, ζ. We will take into 
account the expected values of hydrodynamic pressure EX[p(ϕ, ζ )], temperature EX[T(ϕ, y, ζ )], 
lubricating oil velocity value EX[vi(ϕ, y, ζ )], lubricating oil viscosity EX[ηa(ϕ, y, ζ )], lubrication 
gap height EX[εT(ϕ, ζ )]. We assume that the lubricating oil is incompressible and we omit changes 
in lubricating oil density. Then, we use the classic simplification of hydrodynamic equations for 
the boundary layer, consisting in omitting the part of equations, which are of the order of a radial 
relative clearance, i.e. 10–4-10–3. 
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Fig. 1. The geometry of parabolic slide bearing 

 
The system of partial differential equations determines the following expected values of 

randomly variable unknown functions: three components of the lubricating oil velocity vector 
EX[vi(ϕ, y, ζ )] [m/s]; hydrodynamic pressure EX[p(ϕ, ζ )] [Pa], temperature EX[T(ϕ, y, ζ )] [K]. 

The part on the equation of momentum conservation describes the centrifugal forces occurring 
during the cooperation of two surfaces. These forces occur only when the Lame‘s coefficient h1 is 
a function of the ζ coordinate. This is the case for surfaces with a spherical, conical, parabolic or 
elliptical shape, but not cylindrical, where the coefficient h1 has a constant value. By analysing the 
influence of centrifugal forces on the value of hydrodynamic pressure, it can be stated, that for 
angular velocities in the range from 0 to 300 s–1 and for the differences in diameters of the 
parabolic shaft (see Fig. 1) a/a1 up to 30%, this effect is of the order of 1-3%. Due to the above, 
this effect was omitted in further analysis. 

The integration of the system of equations (equation of momentum conservation, the equation 
of stream continuity and the equation of energy conservation), describing the lubrication of the 
rotating surfaces separated by a thin layer of a lubricating oil, will be carried out in the curvilinear 
coordinates (ϕ, y, ζ ) of the parabolic coordinate system. 

The shaft surface rotates at a constant angular speed ω, while the sleeve surface is fixed. 
The volume between these surfaces is filled with lubricating oil and the distance between them is 
determined by the random height εT variable. Therefore, the boundary conditions for the expected 
velocity components functions of the lubricating oil EX(v1), EX(v2), EX(v3) in the ϕ, y, ζ 
directions, are as follows: 

 2
1 1 1 1( ) cos ( , ) for 0, ( ) 0 for ( )p TEX v a y EX v y EXω Λ ζ ε= = = = , (3) 

 2 2( ) 0 for 0, and ( ) 0 for ( )TEX v y EX v y EX ε= = = = , (4) 

 3 3( ) 0 for 0, ( ) 0 for ( )TEX v y EX v y EX ε= = = = . (5) 

By applying the condition (3) to the appropriate equations of momentum conservation, we 
obtain the following form of the expected function of the randomly variable velocity vector 
component in the circumferential direction ϕ: 

 [ ]1 1 1
1

1 ( )( , , ) (1 ) ( )
( ) s

EX pEX v y A A h
h ηϕ ζ ω ζ

ζ ϕ
 ∂

= + − ∂ 
, (6) 

where the functions As [1], Aη [m4/Ns] have been introduced, which are as follows: 
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for: 0 ≤ ϕ ≤ 2π, –b ≤ ζ ≤ +b, 0 ≤ y ≤ EX(εT), EX(εT) = EX[εT(ϕ, ζ )], EX(ηa) = EX[ηa(ϕ, y, ζ )], 
where the expected value of apparent viscosity ηa [Pas] is in the form: 

 ( ) ( ) ( )1 1 1a a o p TEX ,r,z EX p,T , EX γη ϕ η γ η η η η= ≡ ⋅ ⋅        (7) 

while: 

( )1
p php o hp

p
o o

EX ,r,z EX e δη η η
η ϕ

η η
−− 

  = −  
 

, ( ) ( )( )1
T oT T

TEX ,r,z EX e δη ϕ − −=   , 
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1
22

1
1
2

trγ  ≡ ⋅  
A , (8) 

1
1 1,p

a a / b
a

Λ ζ ζ−
≡ = , 2

1 1 1cos ( )ph a Λ ζ= ,  ( ) ( ) ( )2 2
3 1 1 1 1 1 11 4 / sin cosp p ph LΛ Λ ζ Λ ζ= + . 

The following designations are introduced: 2b – the length of bearing sleeve [m],  
ρ − lubricating oil density [kg/m3], ηhp – lubricating oil dynamic viscosity at high pressure [Pas], 
η∞ – lubricating oil dynamic viscosity at high shear [Pas], δp – the coefficient determining changes 
in viscosity as a function of pressure [Pa–1], δT – the coefficient determining changes in viscosity 
as a function of temperature[K–1], To – reference temperature [K], a, a1 – the diameters of the shaft 
(see Fig. 1a), d, n – coefficients of the Cross model [s], γ – shear rate [s–1].  

By applying the condition (5) to the appropriate equations of momentum conservation, we 
obtain the expected function of the randomly variable velocity vector component in the 
longitudinal direction: 

 [ ]3
3

1 ( )( , , )
( )

EX pEX v y A
h ηϕ ζ

ζ ζ
 ∂

=  ∂ 
. (9) 

Integration of the continuity equation for the boundary condition (4) i.e. EX(v2) = 0 for y = 0, 
gives the following form of the expected function of the randomly variable velocity vector 
component in the gap height direction y: 

 [ ] [ ]1 31
2

1 30 0

( )( )1 1( , , ) .
( ) ( )

y y h EX vEX vEX v y dy dy
h h

ϕ ζ
ζ ϕ ζ ζ

∂∂
= − −

∂ ∂∫ ∫  (10) 

Now we will substitute functions (8), (9) to the solution (10). We apply the boundary condition 
(4) in the form: EX(v2) = 0 for y = EX(εT), i.e. the boundary condition for on the component of the 
oil velocity vector in the gap height direction y. Hence, we get the following stochastic modified 
Reynolds type equations, determining the expected function EX[p(ϕ, ζ )] of randomly variable 
hydrodynamic pressure: 

 

( )

( ) ( )
1 1 1 1

3 1 3 1 0 0

( )
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1 1
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( ) ( )

( ) ( ) .
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ζ ζ ζ ζ ϕ ϕ

ω ζ ε
ϕ

         ∂ ∂ ∂ ∂
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 ∂
= − 
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∫ ∫

∫
 

  (11) 

, 
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Substituting the expected functions of the oil velocity vector components (6), (9) into the 
energy equation, for the constant heat conduction κ coefficient, after transformations, we obtain 
the following differential equation, which allow us to determine the function of the expected 
temperature: 

222

1 1 1 32
1 1 3 1

( )( ) 1 ( ) 1 ( )( ) 0
( ) ( )

a sA AEX AEX T EX p EX pM h M
y h y y h y

η ηη
ω ζ

κ ζ ϕ ζ ζ

   ∂ ∂   ∂∂ ∂ ∂ + − − + − =      ∂ ∂ ∂ ∂ ∂ ∂        
, (12) 

for: 0 ≤ ϕ ≤ 2π, –b ≤ ζ ≤ +b, 0 ≤ y ≤ EX(εT), EX(εT) = EX[εT(ϕ, ζ )], EX(ηa) = EX[ηa(ϕ, y, ζ )], 
The determination of the expected function EX[T(ϕ, y, ζ )] of randomly variable temperature, 

from the second order differential equation (12), requires two boundary conditions. The declines 
and increments of the expected temperature function below and above the characteristic 
temperature T0 finally give a constant temperature value fc at the shaft (moving) surface and 
unknown value of temperature changes fp(ϕ,ζ) at the sleeve (not moving) surface. Thus, the two 
boundary conditions are in the following form: 

 0

0

[ ( , , ) for 0,
[ ( , , ) ( , ) for ( ).

c

p T

EX T y T f y
EX T y T f y EX

ϕ ζ
ϕ ζ ϕ ζ ε

= + =
= + =

 (13) 

To designate an unknown temperature function fp(ϕ, ζ ) at bearing sleeve surface, we use the 
condition of the heat flux density qc, which is transported from the shaft surface, through the 
lubricating oil layer, to the bearing sleeve surface. This condition has the following form:  

 for 0c
EX(T ) q y .

y
κ ∂

= − =
∂

 (14) 

 
5. Random friction forces, friction coefficient and load carrying capacity 
 

The components of expected random functions of friction forces in curvilinear ϕ, ζ directions 
occurring in parabolic bearing have the following forms: 

 ( )
( ) ( )

( )
( ) ( )

23 21
1 1 1 1 1 1 1

23 23
3 1 1 1 1 1 1

( )( ) ( ) cos ( ) 1 4 / sin ,

( )( ) ( ) cos ( ) 1 4 / sin ,

T

T

R T p p p
y EX

R T p p p
y EX

EX vEX F EX a L d d
y

EX vEX F EX a L d d
y

Ω ε

Ω ε

η Λ ζ Λ Λ ζ ϕ ζ

η Λ ζ Λ Λ ζ ϕ ζ

=

=

 ∂
= + ∂ 

 ∂
= + ∂ 

∫∫

∫∫
 (15) 

where: 0 ≤ ϕ ≤ 2π, –b ≤ ζ ≤ +b, 0 ≤ y ≤ EX(εT), EX[ηa(ϕ, y, ζ )] – expected functions of oil 
viscosity, EX[εT(ϕ, ζ )] – expected functions of random gap height, Ω (ϕ, ζ ) – lubrication surface.  

The expected value of the bearing load carrying capacity C [N], which acts in the opposite 
direction to the bearing load W [N], is determined from the following relation: 

[ ] [ ]
2 2

2 2
1 1 1 1

0 0

( ) ( , ) cos ( )(sin ) ( , ) cos ( )(cos )
k kb b

p p
b b

EX C EX p a d d EX p a d d
ϕ ϕ

ϕ ζ Λ ζ ϕ ϕ ζ ϕ ζ Λ ζ ϕ ϕ ζ
+ +

− −

      
= +                  

∫ ∫ ∫ ∫ , (16) 

for 0 ≤ ϕ ≤ ϕk < 2π, –b ≤ ζ ≤ +b where: ϕk is the angular coordinate of the oil film end location, 
2b – the length of the sleeve.  

The EX(p) is expected value of stochastic hydrodynamic pressure. Using the Coulomb’s Law 
of friction, the dimensionless, randomly variable coefficient of friction, in the parabolic coordinate 
system, has the following form: 
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 1 1 3 3( ) ( )
( )

R REX F EX F
EX C

µ
+

=
e e , (17) 

where e1, e3 are the unit vectors in circumferential ϕ and longitudinal ζ directions.  
 
6. Numerical calculations 
 

The numerical calculations of hydrodynamic pressure were made using the finite difference 
method and subsequent approximations, by solving the equation (11). The calculations were made 
by simulating the changes in the lubrication gap height due to the surface roughness. The 
simulated changes in the height of the lubrication gap εp(1 + δ ) were, as follows: (1 + δ ) = 0.80; 
0.85; 0.90; 0.95; 1.00; 1.05; 1.10; 1.15; 1.20, of the nominal value εp. In the first calculation step, 
the constant dynamic viscosity of the oil was assumed. After obtaining the hydrodynamic pressure 
distribution, the values of temperature were determined. In the second calculation step, the 3D 
dynamic viscosity distribution, calculated by taking into account the influence of pressure, 
temperature and shear rate, was obtained. Then, the hydrodynamic pressure and temperature 
distributions were again determined. The calculations were continued in the next calculation steps 
until the difference in the determined values between successive steps did not differ more than 
0.5%. The calculations were performed in the Mathcad 15 program using authors own calculation 
procedures. Having the final hydrodynamic pressure distributions, the load carrying capacities, 
friction forces and friction coefficients were calculated, for the relative eccentricities λ = 0.4; 
λ = 0.6; λ = 0.8, for the bearing with dimensionless length of L1 = 1. The assumed values in the 
calculations are: the shaft diameters a = 0.035 m and a1 = 0.032 m, the angle between shaft 
rotation axis and sleeve axis γ = 0, the relative radial clearance ψ = 0.001, the angular speed of the 
shaft ω = 300 s–1, the coefficient describing viscosity changes due to temperature δT = 0.04138 K–1 
and the coefficient describing changes of viscosity due to pressure δp = –3.706·10–6 Pa–1. 
The characteristic dimensional value of dynamic viscosity at the reference temperature To = 363 K, 
was ηo = 0.01358 Pas, while viscosity for high-pressure ηhp = 0.026192 Pas and the viscosity for 
high shear η∞ = 0.01035 Pas. The coefficients of Cross model were d = 0.0075 and n = 0.60073. 
The value of heat conduction coefficient was of κ = 0.15 W/mK. 

The values of the load carrying capacity, calculated with the equation (16), as a function of 
simulated changes in the height of the lubrication gap, are presented in Fig. 2, while the values of 
the friction force determined with the equation (15), are shown in Fig. 3. The coefficient of friction 
(17), as a function of simulated changes in the lubrication gap height, is shown in Fig. 4. 

The relative changes of load carrying capacities ∆C, friction forces ∆FR and coefficients of 
frictions ∆µ for the simulated changes in the lubrication gap height εp(1 + δ1), as a result of taking 
into account the surface roughness, are shown in Tab. 1. The relative changes of the described 
values have been calculated according to the following formulas: 

 

1 1

1

( ) (1 ) ( ) (1 )
100%, 100%,

( ) ( )

( ) (1 )
100%.

( )

p p R p R p
R

p R p

p p

p

C C F F
C F

C F
ε ε δ ε ε δ

∆ ∆
ε ε

µ ε µ ε δ
∆µ

µ ε

   − + − +   = =

 − + =

 (18) 

 
7. Observations and conclusions 
 

The obtained results of numerical calculations presented in Figs. 2-4 and in Tab. 1, let us 
deduce that: 
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– reduction of the lubrication gap height by 5% results in an increase of load carrying capacity 
by 11-12% on average, while friction forces by 6-7%, but a decrease in the coefficient of 
friction by 4.4-4.7%, 

– reduction of the lubrication gap height by 20% results in an increase of load carrying capacity 
by 58-62% on average, while friction forces by 30-32%, but a decrease in the coefficient of 
friction by 18-19%, 

– increasing the height of the lubrication gap by 5% causes a drop in the load carrying capacity 
of 9.6-10.4%, while drop in the friction force value is 5.7-6.1%, and causes an increase in the 
coefficient of friction by 4.3-4.7%, 

– increasing the height of the lubrication gap by 20% causes a drop in the load carrying capacity 
of 31-34% and drop in the friction force value of 19.8-21.4%, and causes an increase in the 
coefficient of friction by 17-19%. 
 

a) 

 

b)  

 
 

c) 

 
Fig. 2. Load carrying capacity (a), friction force (b), friction coefficient (c) as a function of simulated changes  

of lubrication gap height, for the relative eccentricities: λ = 0.4, λ = 0.6, λ = 0.8 
 

Tab. 1. The relative changes in the values of load carrying capacity ∆C, friction force ∆FR  
and friction coefficient ∆µ for the simulated changes of lubrication gap height εp(1+δ1) 

Change  
of gap  
height 

Relative eccentricity Relative eccentricity Relative eccentricity 
λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.4 λ = 0.6 λ = 0.8 λ = 0.4 λ = 0.6 λ = 0.8 

Relative changes of load 
carrying capacity ∆C [%] 

Relative changes of friction 
force ∆FR [%] 

Relative changes of friction 
coefficient ∆µ [%] 

0.80·εp –62.74 –59.39 –58.05 –32.06 –30.39 –29.76 18.86 18.15 17.90 
0.85·εp –42.92 –40.56 –39.61 –22.66 –21.51 –20.99 14.14 13.54 13.33 
0.90·εp –26.19 –24.76 –24.17 –14.29 –13.49 –13.23 9.44 9.00 8.84 
0.95·εp –12.12 –11.41 –11.14 –6.77 –6.41 –6.25 4.73 4.48 4.38 
1.00·εp – – – – – – – – – 
1.05·εp 10.39 9.82 9.58 6.13 5.80 5.68 –4.74 –4.43 –4.34 
1.10·εp 19.38 18.29 17.88 11.72 11.09 10.78 –9.51 –8.85 –8.61 
1.15·εp 27.21 25.71 25.10 16.80 15.91 15.46 –14.30 –13.22 –12.84 
1.20·εp 34.06 32.24 31.43 21.45 20.33 19.77 –19.12 –17.59 –17.03 
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The influence of the relative eccentricity on the relative changes of bearing load carrying 

capacity, friction force and coefficient of friction, is small, i.e. on the order of a few percent.  
The stochastic changes in the lubrication gap height, due to surface roughness or other factors, 

have a significant impact on the operational parameters of the hydrodynamic slide bearings; 
therefore, it should be taken into account during simulations and design of slide bearings. 
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