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Abstract 

One of the most important subsystems of the vehicles and machines operating currently in industry and 
transportation are the rotating subsystems. During the operation, due to the forcing factors influence, the technical 
state of them is changing and the failure can occur. Fault diagnosis is maintenance task considered as an essential in 
such subsystems, since possibility of an early detection and diagnosis of the faulty condition can save both time and 
money. To do this the analysis of the subsystems vibrations is performed. The identified technical state should be 
considered in a context of the ability and different inability states. Therefore, the first step of the diagnostic procedure 
is the ability and different inability states identification.  

Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are 
unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. The 
emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault 
diagnosis while lowering necessity for expert knowledge and human work. This article presents authors initial 
research in deep learning-based data-driven fault diagnosis of rotating subsystems. The proposed technique input raw 
three-axis accelerometer signal as high-definition image into deep learning layers, which automatically extract signal 
features, enabling high classification accuracy. 
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1. Introduction

Rotating machines in general consist of three major parts: a rotor, rolling or journal bearings
(fluid or anti-friction bearings) and a foundation. Rotating subsystems are one of the most 
important elements used in different kind of vehicles and machines in order to transform the 
energy and transmit the power. Since rotary machinery usually operates under a tough working 
environment, it makes it more vulnerable to various types of faults and increases the complexity of 
fault diagnosis. Both studies and experience show that faults develop and occur in rotating 
machines during normal operation results in not only the loss of productivity but also in the 
delayed delivery of goods and services to customers and may even lead to safety, economic and 
environmental problems. 

Vibrations produced by rotary machinery elements occur irrespective of type of rotary 
machinery or transport equipment. In general, it can be concluded that vibrations are produced by 
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shafts, axes, fans, pumps and turbines depending on the type of subsystems. Vibration in any 
rotating machinery is caused by faults like imbalance, misalignment, crack, etc. 

Vibration monitoring is considered leading technique for rotary equipment condition detection 
and diagnostics [1]. In past few years, many techniques for signal processing and extraction of 
information in fault diagnosis was titled in research, primarily focusing in improving the currently 
available (traditional) or developing new techniques. Additionally, the development of techniques 
supported by artificial intelligence and application in the field of maintenance by the state have 
demonstrated their better performance compared to analytical models with classic approaches [2]. 

Due to the recent increase for the amount of data collected, more and more effort is being 
invested in the development of techniques for computing the condition of rotation equipment. In 
recent years, deep learning techniques have achieved huge success in image [3, 4] and speech [5], 
[6] recognition.  

Deep learning stands for class of machine learning techniques specific by its many layers of 
information processing stages in deep architectures that are exploited for pattern classification and 
other tasks [7].  

Authors focused their efforts on vibration signals time-domain analysis. Firstly, using the 
experimental simulation stand, the experiment simulations described in chapter 2 were performed 
in order to record vibrations signals of rotational subsystem operating in ability and different 
inability states.  
For the purposes of research, a convolutional neural network with the ability to capture collected 
data without further pre-processing or features calculation has been developed. Design of the 
neural network is described in chapter 3. Chapter 4 presents training process and results of the 
experiment performed. The article is summed up by some conclusions formulated in chapter 6. 

 
2. Performed experiment simulations 

 
In the study, the vibration signals acquired from a machine fault simulator were used. 

A SpectraQuest variable speed Machinery Fault Simulator (MFS) was used to generate both 
normal operation (NS) and faulty condition data. The simulation stand (Fig. 1) comprised 1 HP 
variable speed motor driving a shaft-rotor component via coupling supported with two sets of ball 
bearings. The MFS is outfitted with three-axis accelerometer and a tachometer that were connected 
to a National Instruments DAQ System.  

Three-axis accelerometer was mounted on the bearing housing on the shaft side opposite of the 
motor position. The sampling frequency was set to 6.4 kHz, while revolving speed during the 
experiment was 1500 rpm. Vibration signals in three directions (X, Y, Z) were acquired when the 
system operated under normal condition (NS) and faulty conditions. There were two faulty shaft 
conditions simulated: eccentric rotor fault (ERF) and unbalanced rotor fault (IMRF). Operation 
under normal conditions was interpreted as operating of the rotation subsystem remaining in 
ability state while operation under any of faulty conditions was interpreted as operating of the 
rotation subsystem remaining in inability state. 

Each acquired sample of 6400 data points is stored as dataset representing state. Vibration 
signals under three different working conditions are used in this study. They are divided into 
training and testing datasets separately, which are randomized before being used in training and 
testing the model. The descriptions of them are listed in Tab. 1. 

 
Tab. 1. Simulated fault conditions 

No. Condition Description 
1 Normal state Machine is running without simulated fault 
2 Unbalanced rotor Machine is running with simulated fault of imbalance on main shaft 
3 Eccentric rotor Fault is simulated by adding eccentric rotor on main shaft 
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Fig. 1. Fault simulator: 1 – Three-phase induction motor, 2 – Variable speed motor drive   

3 – clutch, 4 – main shaft with load, 5 – 3-axis accelerometer 
 
Each vibration sample comprising 6400 values was stored as a separate vibration signal. 

The 3150 datasets have been collected to train the convolutional neural network data-driven model 
for failure classification and separately 1350 measurement has been made to collect test data. 
Tab. 2 illustrates the data composition of collected samples. From all the samples, 70% of the data 
is used for training and validation during training while rest of 30% is used for testing the model. 
The 10% of training data is used for validation during training. The samples for training, testing, 
and validation during the experiment were selected randomly. 
 

Tab. 2. Composition of collected samples for fault classification 

Machinery state Training samples Test samples Sum 

Normal working 
condition 1050 samples 

Group 1 (150 samples) 

4500 datasets collected  
(28 800 000 data points) 

Group 2 (150 samples) 
Group 3 (150 samples) 

Unbalanced rotor 1050 samples 
Group 1 (150 samples) 
Group 2 (150 samples) 
Group 3 (150 samples) 

Eccentric rotor 1050 samples 
Group 1 (150 samples) 
Group 2 (150 samples) 
Group 3 (150 samples) 

 
Convolutional neural network training is done on GPU of our machine learning platform that 

consist of Intel i7-7700 CPU, 32GB of RAM and CUDA capable GeForce RTX 2070 graphics 
card with 2304 Cuda Cores and 1620 MHz base clock. 
 
3. Convolutional Neural Network Design 

 
Convolution Neural Networks (CNN) are a type of artificial neural network that are adapted to 

relatively fast and efficient resolution of the problems of high-dimensional inputs or inputs that 
possess a multitude of features with its internal structure. Its main application CNN has gained in 
processing, classifying and recognizing objects in the images, but recently examples of the 
application of such architecture in the maintenance field can be found [8-10]. 

CNN is a variant of the feed-forward multi-layer neural network and is primarily designed for 
processing image data in the form of a matrix, taking into account local and global stationary 
properties [11]. Its structure is similar to a classical multilayer perceptron or a classical feed-
forward artificial neural network. CNN is a network composed of layers, in which the output of the 
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previous layer is connected to the input of the next with a set of parameters that can be learned. 
The main difference with respect to the multilayer perceptron is that each layer is represented as 
a set of input and output mapping features, calculated by the convolution procedure, with the aim 
of covering different perspectives of input data. 

Generally, the operation of the convolutional network can be divided into several main 
operations: Convolution, Activation function, Pooling, followed by one or more fully connected 
layers aimed to classify the features learned in convolutional layers, as shown in Fig. 2. 
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Fig. 2. Structure of convolutional neural networks 
 

Tab. 3. Convolutional neural network layers activations and parameters 

Layer Description Activations Learnable parameters 
Input layer Signal input 6400 x 1 x 3 - 

Convolutional layer 1 
Number of kernels: k/2 
Kernel size: k x 1 x 3 

Stride: [1 1] 
6400 x 1 x k Weights k x 1 x 3 x k/2 

Biases 1 x 1 x k/2 

Batch normalization 1 Batch size: 128 6400 x 1 x k/2 Offset 1 x 1 x k/2 
Scale 1 x 1 x k/2 

Activation Layer 1 ReLU 6400 x 1 x k/2 - 

Pooling layer 1 Max Pooling [2 1] 
Stride: [1 1] 6399 x 1 x k/2 - 

Convolutional layer 2 
Number of kernels: 16 
Kernel size: k/2 x 1 x 4 

Stride: [1 1] 
6399 x 1 x k Weights k/2 x1 x k/2 x k 

Biases 1 x 1 x k 

Batch normalization 2 Batch size: 128 6399 x 1 x k Offset 1 x 1x k 
Scale 1 x 1x k 

Activation Layer 2 ReLU 6399 x 1 x k - 

Pooling layer 2 Max Pooling [2 1] 
Stride: [1 1] 6398 x 1 x k  

Convolutional layer 3 
Number of kernels: k 

Kernel size: k/2 x 1 x 4 
Stride: [1 1] 

6398 x 1 x k Weights k/2 x 1 x k x k 
Biases 1 x 1 x 16 

Batch normalization 3 Batch size: 128 6398 x 1 x k Offset 1 x 1x k 
Scale 1 x 1x k 

Activation Layer 3 ReLU 6398 x 1 x k - 

Pooling layer 3 Average Pooling [4 1] 
Stride: [1 1] 6395 x 1 x k  

Fully connected layer 3 fully connected layer 1 x 1 x 3 Weights 3 x (6395 k) 
Biases 3 x 1 

SoftMax activation Softmax function 1 x 1 x 3 - 
Output layer Classification output - - 
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The CNN structure in this study contains three alternating convolutional and pooling layers 
with one fully connected layer followed by SoftMax activation function and classification output 
layer. By using such a combination of layers, all 6400 univariate time series points spread across 3 
channels from each of the samples are used for feature learning.  

Best combination of hyper parameters was sought by testing the grid of numbers k = [4 8 12 
16], respectively. For this research, hyper parameters named number of kernels and kernel size 
were considered for grid search. First convolutional layer output consists of k/2 feature maps 
calculated using k/2 number of kernels with size k x 1 x 3, that are translated into second layer 
inputs. Further on, second and third convolutional layer consist of k number of kernels where k 
feature maps with kernel size of k/2 x 1 x 3 layer are calculated. The activations and learnable 
parameters of each layer along with description of each layer are presented in Tab. 4.  
 
4. Training and results 

 
Neural network learning is an iterative procedure for determining the weights and biases of 

neurons in the network. The developed CNN adjusts learnable parameters by minimizing 
previously defined loss function (1). 

 * ( ) log( ( ))k kt k
E y t y t= −∑ ∑ , (1) 

where: * ( )ky t  and ( )ky t  are the targets and predicted values of the t-th training example of the k-th 
class, respectively. Widely used backpropagation algorithm is used to minimize the loss function 
by calculating stochastic gradient descent that allows network to update parameters during 
training. For the purpose of research constant learning rate of 0.005 and momentum of 0.95 were 
used, respectively. 

As defined previously, 4 different kernel size and number of kernels were used to obtain better 
network structure. Network with different values of k were developed and trained for 10 
consecutive times. After each training iteration, trained network was evaluated by calculating 
accuracy on every test group and all calculated values were stored. 
 

Tab. 4. Hyper parameters grid search – accuracies 

k Test 1 Test 2 Test 3 Average Worst Best StDev 
4 93.23% 92.90% 92.66% 92.93% 78.17% 98.12% 0.0786 
8 99.83% 99.90% 99.73% 99.82% 99.33% 100% 0.0038 

12 99.93% 99.93% 99.96% 99.94% 99.83% 100% 0.001 
16 99.87% 99.83% 99.90% 99.87% 99.33% 100% 0.0025 

 
Table 4 presents calculated averages of accuracies for each test group, followed by average, 

worst and best values and standard deviation obtained for each k value. It can be seen that CNN 
with k = 4, i.e. k smaller than 8 produces considerably poorer than networks with larger number k. 
It can be concluded, that network with k = 4, which has only 2 feature maps in first convolutional 
layer, is not capable of adjusting learnable parameters to efficiently classify test set data. On the 
other hand, networks with larger k were able to estimate class with larger accuracy. Best 
evaluation results for each k value larger than 4 were 100% on each of the test group samples. 
Further on, networks trained with k = 12 yields lowest standard deviation altogether with greatest 
average among all test samples. Although training performed with k = 16 resulted second best 
score in both average accuracy and standard deviation, higher k value means longer training and 
higher potential of overfitting due to quantity of learnable parameters. CNN-s are widely presented 
as black-box solutions and they are somewhat hard to understand inner operating mechanisms. To 
better understand how features are being generated, visualization of the CNN layers activations for 
network with k = 12 and 100% accuracy on all three test sets has been done.  
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Input layer Conv1 layer Conv2 layer Conv3 layer Fully connected 
layer 

     
Fig. 3. t-SNE feature representations 

 
For the purpose of visualizing this high dimensional data, t-SNE [12] algorithm with is 

implemented. The t-SNE is used for dimensionality of high dimensional points represent layer 
activations point for all test data samples combined. Nearby points in the high-dimensional space 
correspond to nearby embedded low-dimensional points, and distant points in high-dimensional 
space correspond to distant embedded low-dimensional points. Learned feature representation is 
presented in Fig. 3. 

By looking from the input layer through convolutions, it can be more clearly seen features 
become extracted in the form of layer activations and divided into colour clusters representing 
classes as we are moving to the fully connected layer.  

 
5. Summary and conclusions 

 
The research presented in the article sums up authors' preliminary study in convolutional neural 

network application for rotary machinery intelligent fault diagnosis. In order to identify ability 
state named normal working conditions and specified inability states (i.e. early faults) the 
experimental tests were accomplished. During the test, vibration signals were recorded. Recorded 
accelerometer signals in time domain were divided into learning and testing sets without 
calculating any additional signal feature. Algorithm for automatic feature extraction and rotary 
machinery state classification based on convolutional neural network is designed and trained. Grid 
search is used for hyper parameters optimization.  

Trained networks were tested on experimental data collected in Laboratory for Maintenance of 
University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture. 

Results shows great potential of the proposed CNN technique in the data-driven fault diagnosis 
field, especially since vibration signals from three-axis accelerometer enters model without any 
time-consuming manual feature extraction. Based on the results of the executed tests, where best-
trained network performed well on the testing data sets and obtained 100% accuracy, it was stated 
that the proposed fault diagnosis technique is precise enough to be the object of further industrial 
research. 

Additional testing of proposed technique on different types of failures and on known datasets is 
essential for performance comparison. Further, on selecting optimal hyper parameters is still a 
challenge. Finally, training process of developed is time demanding and using GPU hardware is 
highly advisable. Considering those, future work will be based on additional testing of the 
technique. 
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