ISSN: 1231-4005 **e-ISSN:** 2354-0133 **DOI:** 10.2478/kones-2019-0070

ANALYSIS OF RATIOS OF PROPULSION ENERGY DEMAND FOR TRANSPORT BY BULK CARRIERS

Stanisław Polanowski

Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 5586 319, fax: +4858 5586 399 e-mail: stpolanowski@gmail.com

Abstract

The article presents the results of calculations and analysis of the e_M ratio of the propulsion energy consumption per the nautical mile and the e_M ratio of the propulsion energy demand for the transport of 1-ton cargo per the nautical mile for bulk carriers. The relationship between e_M and e_M indicators with the EIV (Estimated Index Value) ratio is shown. The output data for the determination of e_M and e_M indicators was taken from the quoted MAN publication, reading (reproducing) the values of power, velocity v and DWT tonnage from the charts included in this publication. Calculations and analyses were made for velocity v between 11-15 knots and for DWT from 5-400 kt (kilo tonnes). The graphs of e_M and e_{Mt} ratios in the function of speed v and load capacity DWT are presented. Using the stepwise method of least squares, models of statistical dependence of indicators on velocity v and load capacity of bulk carriers were developed. They were based on generalized polynomials with integer exponents. Derivatives de_M / dv and de_{Mt} / dv and derivatives $de_M / dDWT$ and $de_{Mt} / dDWT$ were determined. The main observations resulting from the conducted analyses are observed with the increase of DWT (within the range of 80-100 kt) a significant decrease in the value of the e_M index. For DWT values> 100 kt, the decrease in e_{Mt} is slow – e_{Mt} asymptotically tends to a constant value. The results of the analyses carried out can be used at the stage of designing the transport capacity (tonnage) and nominal speed of the ship as well as selection of ship tonnage and travel speed in a given transport situation.

Keywords: bulk carriers, transport, ratio of energy consumption per Nautical Mile, ratio of energy consumption per Nautical Mail and per one ton of DWT

1. Introduction

The energy demand on nautical mile when traveling at speed v can be characterized by means of the ratio e_M , which defines the formula:

$$\mathbf{e}_{\mathbf{M}} = \frac{\mathbf{N}}{\mathbf{v}} \, [\mathbf{G}\mathbf{J}/\mathbf{M}],\tag{1}$$

where:

N – propulsion power [kW],

v – speed [knots],

M - Nautical Mile.

The ratio of unit energy demand for transport of a load unit over a distance of 1 M is defined as follows:

$$e_{Mt} = \frac{N}{v \cdot DWT} = \frac{e_M}{DWT} [kJ/(M \cdot t)], \qquad (2)$$

where DWT - Deadweight Tonnage [kt].

The ratios defined above (1), (2) are directly linked to the design and operating energy efficiency indicators in an obvious way. To explain this, a simplified form of the EEDI (Energy Efficiency Design Index) can be used in the form of the Estimated Index Value (EIV) [1].

The equation for calculating the estimated index value for each ship (excluding containership) can be as follows [1]:

$$EIV = 3.1144 \frac{190 \cdot \sum P_{ME} + 215 \cdot P_{AE}}{v \cdot DWT},$$
(3)

where:

3.1144 – the CO₂ emission factor [g/g],

190 – the specific fuel consumption of main engines [g/kWh],

215 - the specific fuel consumption of auxiliary engines [g/kWh],

 $P_{ME} = -75\%$ of the total installed main power [kW],

 P_{AE} – the auxiliary power.

After entering the e_M ratio, the formula (3) takes the form:

$$EIV = 3.1144 \left(190 \frac{c_{M} \cdot e_{M}}{DWT} + 215 \frac{P_{AE}}{v \cdot DWT} \right),$$
(4)

where c_M onversion factor of the units used.

After entering the e_{Mt} ratio, the formula (3) takes the form:

$$EIV = 3.1144 \left(190 \cdot c_{Mt} \cdot e_{Mt} + 215 \frac{P_{AE}}{v \cdot DWT} \right),$$
(5)

where c_{Mt} conversion factor of the units used.

2. Input data

The input data for the determination of e_M and e_{Mt} energy indicators was obtained by reading the values of the power N and velocity v in the DWT function from the graphs available in the MAN publication [2]. MAN gives the following characteristics of the data developed:

Average propulsion power demand Based on the already described average ship particulars and ship speeds for bulk carriers built or contracted in the period of 2000-2013 with due consideration of the latest ones contracted, we have made a power prediction calculation (Holtrop & Mennen's Method) for such bulk carriers in various sizes from 5,000 dwt up to 400,000 dwt. For all cases, we have assumed a sea margin of 15% and an engine margin of 10%, i.e. a service rating of 90% SMCR, including 15% sea margin [2].

Figure 1 shows an example chart taken from the MAN study for the DWT interval 35-80 kt. The DWT interval, which was considered in the MAN study, is 5-400 kt.

Fig. 1. Propulsion SMCR power demand of Handymax and Panamax bulk carriers [2]

In order to determine the N, v and DWT values, the graphs were analyzed using the screen cursor. Fig. 2 illustrates the obtained values of the e_M energy ratio in the v and DWT intervals shown.

The points determined for individual DWT have been combined broken for improved image perception.

Fig. 2. The set of ratio points e_M determined based on MAN data [2]

Figure 3 illustrates the determined values of the e_{Mt} ratio in the indicated intervals v. In addition, in this case, the determined e_{Mt} points for the given DWT values were connected by broken lines (Fig. 3) in order to improve the perception of the image.

Fig. 3. The set of ratio points e_{Mt} determined based on MAN data [2]

3. Polynomial models of the em ratio

The set of ratios e_M (Fig. 2) was approximated by the least squares stepwise method with generalized polynomials with integer exponents. The model has a form:

$$e_{Ma} = 0.01842 \cdot DWT + 0.00000171 \cdot v^{5} - 0.0559 \cdot DWT^{2} \cdot v^{-3} + 0.000000255 \cdot DWT^{3} \cdot v^{-1} \quad [GI/M]. \quad Ste_{Ma} = 0.087 \, GI/M.$$
(6)

where the Ste_{Ma} standard deviation of the e_{Ma} .

Figure 4 compares the e_M input values with the results of their approximation e_{Ma} .

Fig. 4. Comparison of the results of approximation e_{Ma} with the model (7) with the input data e_M

The obtained model (6) is complex difficult to interpret. For simplification of analysis, approximation was made for three basic speed values: 13, 14, 15 knots. The e_{Ma} models designated for particular v are as follows:

$$\begin{split} e_{M13a} &= 0.01111 \cdot DWT + 1.025 - 3.06 \cdot DWT^{-1} \quad [GJ/M], \quad Ste_{M13a} = 0.049 \text{ GJ/M}, \\ e_{M14a} &= 0.01184 \cdot DWT + 1.514 - 13.91 \cdot DWT^{-1} \quad [GJ/M], \quad Ste_{M14a} = 0.064 \text{ GJ/M}, \quad (7) \\ e_{M15a} &= 0.0132 \cdot DWT + 1.8565 - 13.6 \cdot DWT^{-1} \quad [GJ/M], \quad Ste_{M15a} = 0.064 \text{ GJ/M}, \\ \text{where St} - \text{standard deviations of indexed values.} \end{split}$$

Figure 5 compares the approximated values of the e_M with the approximation results e_{Ma} for the values of the above-selected velocity v.

Fig. 5. Comparison of the results e_{Ma} of approximation with the model (7) with the input data e_M for the next speed of ship: 13, 14, 15 knot

Derivatives $de_M/dDWT$ determined from the model (7) are shown in Figure 6.

4. Polynomial models of the ratio emt

In order to create an approximation model of the e_{Mt} , an identical method was used as in the case of the model of ratio e_M . As a result of the above, the following model was obtained:

Fig. 6. Derivatives deM/dDWT obtained based on the model (7)

 $e_{Mta} = 3516 \cdot v^{-2} + 0.0000951 \cdot DWT^{-1} \cdot v^{6} - 175.4 \cdot DWT \cdot v^{-3} + 0.000000232 \cdot DWT^{3} + 7.61 \ [kJ/(M \cdot t)], \ Ste_{Mt} = 2.9 \ kJ/(M \cdot t).$ (8)

Figure 7 compares the e_{Mt} input values with the e_{Mta} results of approximation with the model (8).

Fig. 7. Comparison of the input values e_{Mt} with the approximation results e_{Mta} by the model (8)

In addition, in this case, approximations were made for selected ship speeds: 13, 14 and 15 knot. Models of ratio e_{Mt} for selected ship speed values, based on stepwise approximation with a generalized polynomial for integer exponents, are as follows:

$$\begin{split} e_{Mt13a} &= 1100 \cdot DWT^{-1} + 11.25 - 7077 \cdot DWT^{-2} + 21120 \cdot DWT^{-3} \quad [k]/(M \cdot t)], \\ &\quad Ste_{Mt13a} = 0.77 \ kJ/(M \cdot t), \\ e_{Mt14a} &= 1562 \cdot DWT^{-1} + 11.53 - 15415 \cdot DWT^{-2} + 73580 \cdot DWT^{-3} \quad [kJ/(M \cdot t)], \\ &\quad Ste_{Mt14a} = 0.61 \ kJ/(M \cdot t), \\ e_{Mt15a} &= 1871.8 \cdot DWT^{-1} + 12.94 - 12345 \cdot DWT^{-2} - 38542 \cdot DWT^{-3} \quad [kJ/(M \cdot t)], \\ &\quad Ste_{Mt15a} = 0.8 \ kJ/(M \cdot t). \end{split}$$
(9)

Figure 8 compares the input data e_{Mt} with the approximation results e_{Mta} with the model (9) for the values of the above-selected velocity v.

Figure 9 shows the derivatives $de_{Mt}/dDWT$ determined based on the model (9).

5. Dynamics of em and emt ratios in the v domain

The dynamics of ratios e_M and e_{Mt} in the considered variability range can be assessed by analyzing derivatives de_M/dv and de_{Mt}/dv .

Fig. 8. Comparison of the results e_{Mta} of approximation with the model (9) with the input data e_{Mt} for the next selected speeds of the ship: 13, 14, 15 knots

Fig. 9. Derivatives $de_{Mt}/dDWT$ determined based on the approximation model (9) for the next speeds of the ship 13, 14, 15 knots

Derivatives of the ratios e_M and e_{Mt} were determined for selected DWT values: 5, 10, 20, 50, 100, 200, 400 kt. The values for each selected DWT were approximated by the following models:

$$e_{M} = a_{M} \cdot v^{W} [GJ/M],$$

$$e_{Mt} = a_{Mt} \cdot v^{W} [kJ/(M \cdot t)].$$
(10)

Values of parameters determined for the above models (10) are presented in Tab. 1.

DWT [kt]	a _M	a _{Mt}	W	St _M	St _{Mt}
5	0.001242	0.24231	2.41	0.0038	0.77
10	0.001745	0.16161	2.35	0.0076	0.79
20	0.001321	0.06603	2.58	0.0062	0.31
50	0.001573	0.03147	2.69	0.0120	0.23
100	0.007906	0.07906	2.20	0.0130	0.13
200	0.015667	0.07833	2.08	0.0140	0.068
400	0.037730	0.09432	1.93	0.0063	0.016

Tab. 1. Values of parameters determined for models (10)

The curves of the derivatives de_M/dv are shown in Fig. 10; the curves of derivatives de_{Mt}/dv are shown in Fig. 11.

Fig. 10. The curves of derivatives de_M/dv for selected DWT

Fig. 11. The curves of the derivatives de_{Mt}/dv for selected DWT

5. Summary and applications

With the increase of DWT, the value of the e_M ratio increases (Fig. 4, 5). In the DWT range up to 80 kt, the e_M rise rate decreases non-linearly (Fig. 6). Above DWT = 80 kt the rise is linear and quickly tends to a constant value (Fig. 6). Changes in the speed of a vessel with a given DWT have the greatest impact on e_M values for large DWT (Fig. 10).

The value of the e_{Mt} ratio decreases with the increase of DWT (Fig. 8, 9). In the range up to 50 kt, the e_{Mt} drop is nonlinear and fast. For DWT > 100 kt, the decrease in e_{Mt} takes on a linear character. The changes in the speed of the ship have the greatest impact on e_{Mt} values for small DWT values (Fig. 11). With the increase in DWT, the effect of velocity decreases and for DWT > 200 kt the e_{Mt} values are practically constant in the function v (Fig. 11).

The results of the analysis carried out can be used at the stage of designing the transport capacity (tonnage) and nominal speed of the ship as well as selection of ship tonnage and travel speed in a given transport situation.

References

- [1] Faber, J., Hoen, M., Vergeer, R., Calleya, J., *Historical Trends in Ship Design Efficiency*. Available from: https://www.google.com/search?q=historical+trends+in+ship+design+efficie ncy&oq=hISTORICAL+TRENDS+IN+SHI&aqs=chrome.1.69i57j0.24169j0j8&sourceid= chrome&ie=UTF-8.
- [2] Propultion Trends in Bulk Carriers. MAN Diesel & Turbo. Avaiable from: http://www.deno. oceanica.ufrj.br/deno/prod_academic/relatorios/2011/Matheus%20Pereira%20e%20Marcos% 20Dias/relat1/Projectmodels/man%20bw%20technical%20paper.PDF. Manuscript received 17 July 2019; approved for printing 19 September 2019