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Abstract 

The most interesting motion of the ship is rolling. This is because the rolling amplitudes are much bigger than 
amplitudes of other degrees of freedom and under resonance conditions, which can exceed 40º. In such a case, when 
the maximum of the righting arm curve is placed at relatively small angles, the roll equation reveals a strongly 
nonlinear character and bistability areas as well as an area of unstable solutions of the roll equation occurs. Together 
with the appearance of the above-mentioned areas, amplitude jumps are possible. In the study, the case of strongly 
nonlinear rolling is analysed. For the purpose of numerical simulations, the 1DOF mathematical model of rolling with 
damping dependent on amplitude and frequency is used. The article presents the roll spectrum including the bistability 
areas and the area of unstable solutions for one loading condition of the offshore support vessel. It is demonstrated 
that for strongly nonlinear rolling, rolling with two different amplitudes for the same value of excitation is possible. It 
is also shown that transitions (jumps) between these amplitudes are possible too. A few scenarios of jumps of the 
rolling amplitude within the region of unstable solutions of the rolling equation are presented. The presented rolling 
scenarios show that under some circumstances rolling can be observed as chaotic. 
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1. Introduction 
 

Ship motions are defined by six degrees of freedom. However, the most interesting motion 
of a ship is rolling. The reasons are the values of oscillations amplitudes, which can be achieved. 
The amplitude of rolling frequently exceeds angles of 20-25º and in resonance conditions even 
40º. In comparison, amplitudes of pitch motion do not exceed 1-2º. Additionally, for medium and 
especially large amplitudes of rolling, in many cases a mathematical model of rolling reveals 
nonlinear behaviour. 

Generally, a mathematical model of rolling is the nonlinear dynamical system, which is 
described by the second-order nonlinear ordinary differential equation. A parameter that 
determines the nonlinearity of rolling most of all is the restoring moment, which is commonly, 
described by the righting arms curve (GZ curve). Usually, for small amplitudes, the nonlinearity of 
the GZ curve is small and can be ignored. In such a case, the mathematical model with linear 
restoring moment works quite well. However when medium and especially large amplitudes of 
rolling are analysed then phenomena typical for nonlinear oscillations should be considered. In 
rolling, these phenomena are most often revealed when the maximum of the GZ curve is located at 
relatively small angles – for an intact ship, it concerns angles close to 30º. Therefore, given that 
extreme amplitudes of rolling in resonance conditions can achieve 35-40º it should be assumed 
that the phenomena typical for nonlinear oscillations could occur under real conditions. 

Obviously, couplings with other degrees of freedom as well as the nonlinearity of roll damping 
or nonlinearity of the moment of added mass due to water dragging by the rolling hull can have an 
impact on the nonlinearity of oscillations. However, the influence of the last two is weak and can 
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be clearly seen in the range of small and medium amplitudes and only in cases when the restoring 
moment is close to linear. 

The characteristic phenomena for nonlinear oscillations are:  
‒ the resonance frequency dependence on rolling amplitude [2, 4, 12], 
‒ bistability (multivaluedness) – the possibility of rolling with two different amplitudes for the 

same value of the excitation moment [4, 18], 
‒ bifurcation – phenomenon which refers to the sudden qualitative change in the solution of the 

mathematical model due to a small smooth change made to the value of some parameter – the 
bifurcation [3, 4, 10],  

‒ jumps of rolling amplitude – since two different amplitudes of rolling are possible, the 
transitions (jumps) between them are possible too [4, 7, 12]. 
Some of the above-mentioned phenomena are related directly to the area of the unstable 

solutions, which can be observed inside the area of the possible solutions of the rolling equation, 
when strong nonlinearity occurs. To reveal the area of unstable solutions the standard roll 
spectrum is insufficient. The roll spectrum should be developed with the use of a two-dimensional 
analysis. This analysis is performed for the assumed surface of the excitation-frequency values in 
combination with external perturbations taking the form of an impact with a variable value of the 
force [12].  

The goal of the research was an analysis of the possible scenarios of amplitude jumps in the 
range of frequencies of the unstable solution of rolling equation. However, due to the limited size 
of this article, only a few scenarios are presented and discussed.  
 
2. Applied model of ship rolling 
 

Since the phenomena characteristic for nonlinear oscillations are mainly the derivative of the 
restoring moment nonlinearity and a general analysis is made then the use of the 1-DOF system is 
most convenient.  

For the constant value of roll, damping the general form of the 1-DOF model of rolling can be 
presented in the form: 

 (𝐼𝐼𝑥𝑥 + 𝐴𝐴44)�̈�𝜙 + 𝐵𝐵𝑒𝑒�̇�𝜙 + 𝐾𝐾(𝜙𝜙) = 𝑀𝑀𝑤𝑤(𝑡𝑡) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑒𝑒𝑡𝑡) + 𝑀𝑀𝑑𝑑(𝑡𝑡), (1) 
where Ix denotes the transverse moment of ship’s inertia, A44 is the moment of added mass due to 
water dragging by the rolling hull, Be is the equivalent linear roll damping coefficient, K(ϕ) 
describes the restoring moment of the ship, Mw is the exciting moment, Md is the additional 
external moment, ωe is the encounter frequency of waves and t denotes time. The moments Mw and 
Md are time dependent. In case of Mw, this allows for periodic changes in the value of roll 
excitation, so groups of higher and lower waves can be simulated. The time-varying external 
moment Md can be used to simulate short external excitation impulses (e.g. caused by the wind).  

After a few transformations, the roll equation (1) becomes: 

 �̈�𝜙 + 2𝜇𝜇 ∙ �̇�𝜙 + 𝑔𝑔
𝑟𝑟𝑥𝑥2
𝐺𝐺𝐺𝐺(𝜙𝜙) = 𝜉𝜉𝑤𝑤(𝑡𝑡) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑒𝑒𝑡𝑡) + 𝜉𝜉𝑑𝑑(𝑡𝑡), (2) 

where µ is the damping coefficient, g is the gravity acceleration, rx is the gyration radius of a ship 
and added masses (which is assumed to be constant for the purpose of this study), GZ is the 
righting arm, ξw is the exciting moment coefficient, and ξd is the coefficient of the additional 
external moment.  

For the purpose of the research, which is discussed the restoring moment, was approximated by 
the ninth order polynomial with odd powers only:  

 𝐺𝐺𝐺𝐺(𝜙𝜙) = 𝐶𝐶1 ∙ 𝜙𝜙 + 𝐶𝐶3 ∙ 𝜙𝜙3 + 𝐶𝐶5 ∙ 𝜙𝜙5 + 𝐶𝐶7 ∙ 𝜙𝜙7 + 𝐶𝐶9 ∙ 𝜙𝜙9, (3) 

where C1 to C9 are the coefficients obtained with the use of the least squares method.  
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To take into account the damping dependence on amplitude of rolling, the damping term in the 
equation (2) has been modified to the form given by Himeno [5]. As a result, it becomes: 

 �̈�𝜙 + 2𝛼𝛼 ∙ �̇�𝜙 + 𝛽𝛽 ∙ �̇�𝜙��̇�𝜙� + 𝛾𝛾 ∙ �̇�𝜙3 + 𝑔𝑔
𝑟𝑟𝑥𝑥2
𝐺𝐺𝐺𝐺(𝜙𝜙) = 𝜉𝜉𝑤𝑤 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑒𝑒𝑡𝑡) + 𝜉𝜉𝑑𝑑(𝑡𝑡), (4) 

where α, β and γ are coefficients, which have been calculated analytically according to a simple 
Ikeda’s method [8] with one modification – the bilge keel component was calculated according to 
the full Ikeda’s method [6]. This modification was made due to the inconsistency in the results for 
the bilge keel component calculated according to the full and simplified method.  

When the surface of damping coefficients for the considered range of amplitudes and 
frequencies of rolling was obtained, then for the constant values of roll frequency, the coefficients 
α, β and γ were fitted fulfilling the condition (5) for a full spectrum of considered amplitudes. 
However, when the frequency spectrum is too wide, the method gives some inaccuracy. 

 𝜇𝜇(𝜙𝜙𝑎𝑎,𝜔𝜔) = 𝛼𝛼 + 4
3𝜋𝜋
𝜙𝜙𝑎𝑎𝜔𝜔𝛽𝛽 + 3

8
𝜙𝜙𝑎𝑎2𝜔𝜔2𝛾𝛾. (5) 

The last step was performed so that the coefficients α, β and γ take rolling frequency into 
account – the series of each coefficient (calculated for successive frequencies) has been 
individually fitted for the 4th order polynomial with roll frequency as an argument: 

 𝛼𝛼(𝜔𝜔) = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼𝜔𝜔 + 𝑐𝑐𝛼𝛼𝜔𝜔2 + 𝑑𝑑𝛼𝛼𝜔𝜔3 + 𝑒𝑒𝛼𝛼𝜔𝜔4, (6) 

 𝛽𝛽(𝜔𝜔) = 𝑎𝑎𝛽𝛽 + 𝑏𝑏𝛽𝛽𝜔𝜔 + 𝑐𝑐𝛽𝛽𝜔𝜔2 + 𝑑𝑑𝛽𝛽𝜔𝜔3 + 𝑒𝑒𝛽𝛽𝜔𝜔4, (7) 

 𝛾𝛾(𝜔𝜔) = 𝑎𝑎𝛾𝛾 + 𝑏𝑏𝛾𝛾𝜔𝜔 + 𝑐𝑐𝛾𝛾𝜔𝜔2 + 𝑑𝑑𝛾𝛾𝜔𝜔3 + 𝑒𝑒𝛾𝛾𝜔𝜔4. (8) 

The final form of the roll equation with damping dependence on amplitude and frequency is 
obtained: 

�̈�𝜙 + 2𝛼𝛼(𝜔𝜔𝑒𝑒) ∙ �̇�𝜙 + 𝛽𝛽(𝜔𝜔𝑒𝑒) ∙ �̇�𝜙��̇�𝜙� + 𝛾𝛾(𝜔𝜔𝑒𝑒) ∙ �̇�𝜙3 + 𝑔𝑔
𝑟𝑟𝑥𝑥2
𝐺𝐺𝐺𝐺(𝜙𝜙) = 𝜉𝜉𝑤𝑤 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑒𝑒𝑡𝑡) + 𝜉𝜉𝑑𝑑(𝑡𝑡). (9) 

It should be noted that the Ikeda’s method is fully applicable for amplitudes not bigger than 0.4 
rad and does not consider changes to roll damping due to bilge keel emergence and deck 
submergence. For the latter problem, no exact analytical method is known at the moment – some 
propositions of a solution can be found in [1]. 
 
3. Roll spectrum for the strongly nonlinear system 
 

When rolling is strongly nonlinear, the standard roll spectrum is insufficient to describe the 
possible behaviour of a ship. For the strongly nonlinear system, the roll spectrum should 
be developed with the use of a two-dimensional analysis [12]. The result of such calculations for 
the offshore support vessel (T = 6.10 m, GM0 = 2.50 m), performed using the equation (9) for the 
assumed and widespread surface of excitation-frequency values combined with external 
perturbations in the form of an impact with a variable value of the force is presented in Fig. 1. The 
calculations were performed with the use of the equation (9), where the surface of the damping 
coefficients, estimated according to the simple Ikeda’s method is shown in Fig. 2.  

The parts of Fig. 1 are described below, however it should be noted that the meaning of the 
terms area and region differs; the term area is used concerning a separate part of the graph 
whereas the term region refers to the frequency range. 
‒ Point P – the bistability origin point – the onset point of bistability areas C and D, 
‒ Areas C and D – rolling bistability areas. In area C, the oscillations are non-resonant, but the 

energy provided by the excitation moment is big enough for resonant oscillations within the 
area D. The transitions between the non-resonant and resonant oscillations and so between C 
and D areas are possible. The lower limit of the area C (dashed line) determines the minimum 
value of the energy (excitation moment) needed for resonant oscillations,  
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Fig. 1. Roll spectrum and bistability areas for the offshore support vessel (T = 6.10 m, GM0 = 2.50 m, the GZ curve 

is softening spring), determined for the excitation coefficient ξw ≤ 0.08 and the damping dependent 
on rolling amplitude and frequency 

 

  
Fig. 2. Damping coefficients for the offshore support vessel (T = 6.10 m, GM0 = 2.50 m, CB = 0.778, CM = 0.987, 
bilge keel: lBK = 19.00 m, bBK = 0.30 m) calculated according to the simple Ikeda’s method (left drawing) and next 

approximated using coefficients α(ω), β(ω) and γ(ω) in equation (9) (right drawing) 
 
‒ Areas B and A – areas of unstable solution of the rolling equation. Areas B and A appear 

together with the bistability areas C and D and are separated at the frequency of the bifurcation 
with jump up (in Fig. 1 dashed vertical line between areas B and A). The location of this 
separation line depends on the value of the excitation moment assumed to determine the roll 
spectrum. When the bistability areas C and D are not expanded enough, area A does not 
appear. The entire border of the area of unstable solutions of the rolling equation is the line of 
bifurcation. However, it needs to be highlighted that to determine the lower border of area A, 
calculations using values of the excitation moment bigger than those assumed to determine the 
roll spectrum are necessary. Additionally, for the case presented in Fig. 1 the left border of area 
A was not designated because of the inaccuracy of the GZ curve approximation for angles over 
1.1 rad for the loading condition, which was studied. 

More complex description of the roll spectrum in the form as in Fig. 1 can be found in [12].  
 
4. Rolling amplitude jumps within the region of unstable solution of the rolling equation 
 

In this section the roll equation (9) behaviour within region B and A is described and a few 
possible scenarios of these areas crossing are presented. The presented scenarios were confirmed 
by rolling numerical simulations performed for the OSV vessel. Most of the presented simulations 
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were conducted for frequency ω = 0.5 rad/s, where lower and upper limits of bistability areas, 
in radians, are: C(0.135; 0.235) and D(0.436; 0.539). 

Generally, two types of scenarios of amplitude jumps can be distinguished. The first one refers 
to situations when the frequency or value of the exciting moment Mw is changed. In such a case, 
when the solution of the equation (9) enters the unstable area then the transition (amplitude jump) 
occurs. In Fig. 3 (left), initially a ship is rolling with an amplitude on the upper limit of the area C. 
From the 380 second of simulation time the value of Mw is increased only by 1%. As an effect, the 
transition (amplitude jump) to the area of resonant oscillations can be observed. In Fig. 3 (right), 
initially a ship is rolling with an amplitude on the lower limit of area D. From the 1000 second of 
simulation time the value of Mw is decreased by 1% and the transition (amplitude jump) to the 
non-resonant oscillations occurs. Further, entering area B at the lower limit causes a jump not to 
the upper limit of area B but the upper limit of area D, while entering area B at the upper limit 
causes a jump not to the lower limit of area B but the lower limit of area C. 

 

 
Fig. 3. Roll time history for the OSV vessel (T=6.10 m, GM0=2.50 m). Transitions between the bistability areas 
cause by very small and smooth change) in value of the exciting moment (change by 1% of its initial value) 

 
The second scenario refers to situations when the frequency and value of excitation moment 

are constant in time but due to e.g. wind or couplings, some additional impulses occurring for 
a short time period. For this second scenario, two cases are described below: 
 
Cases when the excitation moment induces a stable amplitude of rolling below the lower limit 
of the bistability area C 

In Fig. 4, the initial and stable roll amplitude is below the lower limit of area C. From 
380 second of simulation time the additional excitation moment Md is introduced. Its value and 
duration time are enough to force crossing of area C and area B and entering area D – resonance-
rolling area. At 440-second moment Md, is stopped and although the oscillations are inside the 
resonance area the amplitude is decreasing to its initial value – the energy provided by the 
excitation moment is too small to maintain such a large rolling amplitude, independently from 
resonance conditions.  

Crossing area C as well area B requires providing a sufficient amount of additional energy, 
despite the fact that area B is the area of unstable solution of rolling equation. Quantity of the 
energy needed for a transition to area D depends on the initial rolling amplitude (transition 
distance) and on damping value. When value of Md is large then its time of duration can be short. 
For smaller values of Md longer time of duration is indispensable. If this additional energy supply 
will be stopped before achieving the area of resonance conditions, the solution quickly returns to 
the initial value of amplitude (Fig. 5). However, when the resonance area is achieved then the 
return to the initial value of rolling amplitude takes much more time (this time depends on the 
depth of entry into the area D) and oscillations with large amplitudes are significantly more 
numerous (Fig. 4). 
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Fig. 4. Roll time history for the OSV vessel (T = 6.10 m, GM0 = 2.50 m, ξw = 0.039). The transition from 
area below the bistability area C to the resonance area D, caused by the additional exciting moment 

ξd(380-440 seconds) = 0.013. 

Fig. 5. Roll time history for the OSV vessel (T = 6.10 m, GM0 = 2.50 m, ξw = 0.039). The reaction to the 
additional exciting moment ξd(380-425 seconds) = 0.013 

Cases when the excitation moment induces stable amplitude of rolling within the bistability area C 
In Fig. 6 (left), the initial and stable roll amplitude is below but very close to the upper limit of 

the bistability area C. From the 450 second of simulation time the impulse in the form of 
additional excitation moment Md is introduced. Its value is very small (ξd ≈ 5% of ξw) and duration 
time is short (5 seconds). The energy which is added to the system is small but big enough for 
entering area B. Entering area B is very shallow but sufficient for the transition (amplitude jump) 
to area D and next the appearance of stable resonant rolling. A similar situation is presented in 
Fig. 6 (right), where initial rolling is also in area B, however not so close to its upper limit. The 
only difference is that the value of the impulse ξd, needed to induce the shallow entry into area B 
must be bigger. In both cases crossing through area B takes place without any additional energy 
support – although it needs some oscillation cycles to fulfil.  

Entering area B not always provides the transition. The transition also depends on the 
oscillation phase at which the additional exciting moment Md occurs. In roll time, history shown in 
Fig. 7 Md occurs three times. Each time, its value and duration are the same as well as the direction 
is compatible with Mw. The only difference is the oscillation phase of its occurrence. Each time, 
the oscillations enter the area of unstable solution but only in the third case, the transition is 
observed.  

Another, very interesting case is presented in Fig. 8, where the situation is similar to the one 
presented in Fig. 6 (right). The difference is that during the crossing the area B, from 600 to 615 
seconds of simulation the additional impulse Md is introduced – its direction of action is opposite 
to Mw. It can be seen that Md enforces the decrease of the oscillations amplitude and the direction 
of its return to area C. However, when Md is stopped the amplitude of oscillations strives to area D 
afresh. 
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Fig. 6. Roll time history for the OSV vessel (T = 6.10 m, GM0 = 2.50 m, ξw,left = 0.0498, ξw,right = 0.0482) 
The transition from the bistability area C to the resonance area D, caused by the additional exciting 

moment ξd(450-455 seconds) 

Fig. 7. Roll time history for the OSV vessel (T = 6.10 m, GM0 = 2.50 m, ξw = 0.044). The additional 
exciting moments: ξd1(252-257 seconds) = ξd2(400-405 seconds) = ξd3(569-574 seconds) = 0.0345 

Fig. 8. Roll time history for the OSV vessel (T = 6.10 m, GM0 = 2.50 m, ξw = 0.0482). The additional 
exciting moments: ξd1(450-455 seconds) = 0.015, ξd2(600-615 seconds) = -0.015 

5. Summary

The article presents a few scenarios of crossing of the area of the unstable solution of the roll 
equation for cases when strong nonlinear oscillations occur. Obviously, there are many scenarios 
that are more possible but the focused of this article has been narrowed for the purpose of 
presentation. Although, the main goal of this article was to show, only to some extent, the possible 
complexity of nonlinear rolling. The phenomena characteristic for nonlinear rolling can be 
observed most often when the maximum of the GZ curve is located at relatively small angles. For 
a ship that meets the intact stability criteria these angles are close to 25-35º. Given that extreme 
amplitudes of resonant rolling can achieve 35-40 º, it should be assumed that nonlinear oscillations 
could occur under real conditions.  
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The rolling scenarios presented in the article show that under some circumstances rolling could 
be interpreted as chaotic. In such situations, rolling simulations performed with the use of linear or 
close to linear techniques can give incorrect information about the ships response to external 
extortion especially when irregular waves are considered. The possibility of the occurrence of 
chaotic rolling can be read from the roll spectrum only if it shows the bistability areas and area of 
unstable solution of roll equation. However, the analysis of ship rolling based on bistability areas, 
area of unstable solution is a new approach to rolling, and it requires further work.  

It is very important to note that the presented analysis concerns the mathematical model of 
rolling and it has not been tested during ship model tests. 
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