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Abstract 

It is known, that small disturbances generated by the micro actuators can alter large-scale vortex structures, and 
consequently, generate appreciable aerodynamic moments along all three axes for flight control. In the current study, 
we explored the possibility of independently controlling these moments. We perform analytical simulations showing 
optimal position of LEX generators, and water tunnel measurements showing effectiveness of MEX generators as 
MAV control devices. We applied array of actuators located on either the forward or the rear half section of the 
leading edge. Both one- and two-sided control configurations have also been investigated. Experimental results 
showed that asymmetric vortex pairs were formed, which leads to the generation of significant torques in all three 
axes. The article presents typical vortical flow over a delta wing, water tunnel at Wroclaw University of Technology, 
experimental setup and procedures, static test results on water tunnel testing including normal forces, pitching and 
yawing moments, maximum values of rolling, pitching, and yawing moment coefficients, effectiveness of pitching and 
yawing control. 

Keywords: Micro Aerial Vehicles, Unconventional control effectors   
 
Nomenclature 
As – reference area (wing area), 
b – wing span, 
ca – medium aerodynamic chord, 
CN – coefficient of normal aerodynamic force, 
Cm – coefficient of pitching moment, 
Cn – coefficient of yawing moment, 
FN – component of aerodynamic force normal to 5th component balance axis (normal 

aerodynamic force), 
M – pitching moment, 
N – rolling moment, 
Re – Reynolds number, 
q – dynamic pressure, 
f, g – generic functions. 
 
1. Introduction 
 

Follows over delta wings have been studied extensively in the literature [1-5]. Even at small 
angles of attack, a pair of spiral vortices originating from the leading edges characterizes the flow 
on the leeward side of the wing (Fig. 1). Peckham [6] reported that leading-edge vortices could be 
observed at an angle of attack (AOA) as low as 2° for delta wings with sharp leading edges. For 
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wings with rounded leading edges, the vortex pairs occur at higher angles of attack due to delay of 
flow separation. 
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Fig. 1. Typical vortical flow over a delta wing (with round leading edges) at moderate angles of attack [39] 
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Fig. 2. Schematically all different actuator configurations used in the article. A detailed discussion of these results will 
be presented in the results and discussion section (a) a-t actuator, (b) forward h-a-t actuator, (c) rear h-a-t actuator  

(d) two-sided h-a-t actuators for pitching control, and (e) two-sided h-a-t actuators for yawing control (note  
actuators are represented by the thicker line segments [39] 

 
Earnshaw and Lawford [7] found that these vortices start to appear at an angle of attack of 5°. 

The boundary layer flow separating from the leading edges will form a free shear layer, which will 
roll up into a core of high vorticity residing above the leeward side of the wing. The vortex core 
grows in radius along the downstream direction and the transverse size of the vortex is on the order 
of half the wingspan at high angles of attack. In addition to the swirl velocity component, each of 
the two leading-edge vortices contains an axial flow component in the central core region. As the 
vortex convects downstream, vorticity is continuously fed into the core region, and the circulation 
about the core increases. Thus, a low-pressure region will be generated by the leading-edge 
vortices. “Vortex lift”, which is distinguished from potential lift, is created as the result of the 
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presence of this low-pressure region. At high angles of attack, the cores of leading-edge vortices 
on the wing tend to “burst” or “breakdown” [8]. Before vortex breakdown occurs, a significant 
portion of the total lift is attributed to the emergence of these leading-edge vortices [9]. It implies 
that we can generate a torque for flight control if we can break the symmetry of these two vortices. 
The majority of vortex control techniques discussed in the literature falls into four categories: (a) 
blowing [10-23], (b) suction [24-25], (c) trailing edge jet control [26-27], (d) large mechanical 
flaps [28-32], and (e) heating [33]. These approaches achieve vortex control by either altering the 
vorticity generation near the leading edges or manipulating the vorticity convection along the 
vortex core. In the paper [39] has shown that if the deflection amplitude of the actuators is 
comparable to the boundary layer thickness near the leading edge separation point, it is possible to 
perturb the separated flow and break the symmetry of the primary vortex pair. For this purpose, we 
used to control delta wing micro actuators with out-of-plane deflection length on the order of 
3 mm. A significant increase in rolling, pitching, and yawing moments has been observed. It has 
also been found that the optimum angular location of actuators for the maximum torque generation 
is closely related to leading edge flow separation [27].  

In order to investigate the interaction between the micro actuators and the vortices, 
a fundamental understanding of the flow field is essential. In light of this, we conducted a series of 
aerodynamic tests, including direct force measurements and flow visualization experiments, with 
and without the flow control. The objective of this work is to investigate how the vortex structure 
is altered by the use of micro actuators and how an unbalanced vortex pair can be used to generate 
appreciable torques at high angles of attack. 
 
2. Experimental Setup and Procedures 

 
A delta wing model with a sweep angle of 60° was sting mounted in a low-Reynolds number 

water tunnel (Fig. 3). The model support rig has a pitch angle range of –60° to 60°, resulting 
in α +/-55° range in angle of attack. The wing has a DF 101 airfoil (Fig. 4), wingspan 0.190 m and 
length 0.165 m (Fig. 5). 

 

 
Fig. 3. Wroclaw University of Technology water tunnel (Rolling Hills Research Corp. Water Tunnel model 2436) [40] 
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Fig. 4. Aerodynamic data of DF101 airfoil 

Due to the limited supply of micro actuators in water tunnel, we used miniature mechanical 
actuators for water tunnel tests. Basically, the mechanical actuator has the same deflection length 
as micro actuators except that the stiffness of the mechanical actuator is larger. The effects caused 
by using miniature mechanical actuators were found to be comparable. 

Fig. 5. Delta wing model 
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3. Results and Discussion

Normal and side force and 3-axis moment data were measured using a 5-component balance 
system and RHRC support system. This balance was used to record changes in torques induced 
by the use of micro actuators. Data were digitized by an analogue-to-digital converter and 
processed by a personal computer (PC) – by using LabViev computer software. 

3.1. Water tunnel testing (static tests) 

Figures 6-11 show the results of measurements normal force and pitching moment of delta 
wing without actuators at different angles of attack. This data was obtained from the five-
component transducer system. 
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Fig. 6. Clean configuration. Normal force in [N] vs. Angle of Attack 
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Fig. 7. Clean configuration. Pitching moment in [Nm] vs. Angle of Attack 
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Fig. 7. Actuators on – pitching control configuration. Normal force in [N] vs. Angle of Attack 
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Fig. 8. Actuators on – pitching control configuration. Pitching moment in [Nm] vs. Angle of Attack 
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Fig. 9. Actuators on -rolling control configuration. Normal force in [N] vs. Angle of Attack 
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Fig. 10. Actuators on -rolling control configuration. Pitching moment in [Nm] vs. Angle of Attack 
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Fig. 11. Actuators on -rolling control configuration. Yawing moment in [Nm] vs. Angle of Attack 

3.2. Pitching and yawing moments  

The data from 5-component balance were also converted into moment coefficients as shown in 
Fig. 6-11. The increasing of pitching, yawing, and rolling moment coefficients are defined, 
respectively, as: 

( ) ( )
( )

, , , , , , 
, , ,

, , ,  

100%
N m n l N m n lactuators on actuators off

N m n l
N m n l actuators off

C C
C

C

−
∆ =

where , , ,N m n lC∆ normal force, pitching moment, yawing moment, and rolling moment 
coefficients respectively. 

The maximum values of pitching, yawing and rolling moment coefficients as function of 
Reynolds number is shown in Fig. 12. The maximum value of pitching moment coefficient is 
0.02683bat Re number = 20 000. The maximum value of rolling moment is 0.0263 at Re=70 000, 
and the maximum value of yawing moment coefficient is 0.00787 at Re=70 000. Those exemplary 
data are measured at Angle of Attack=25 deg. 

Figures 13 and 13 show the increasing of steering moments caused by LED generators. It is 
clear, that it is possible to attain effective MAV control using LEV generators. 
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Fig. 12. Maximum values of rolling, pitching, and yawing moment coefficients at AOA=25° 
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Fig. 13. Effectiveness of Pitching Control vs. Reynolds number at AOA=30 deg 
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4. Conclusion

A pair of nearly symmetric vortices separating from the leading edge characterizes the flow 
over a delta wing. At high angles of attack, these vortices make a significant contribution to the 
total lift of the wing. Hence, if the symmetry of these vortices can be broken by using micro 
actuators, it is possible to generate appreciable moments for flight control.  
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