
 
Journal of KONES Powertrain and Transport, Vol. 25, No. 3 2018 

 
 
 

ANALYSIS OF THE INFLUENCE OF THE CHANGES  
IN THE VALUE OF DYNAMIC VISCOSITY COEFFICIENT  

IN THE DIRECTION OF OIL FILM THICKNESS ON THE JOURNAL 
BEARING LOAD CARRYING CAPACITY 

 
Andrzej Miszczak 

 
Gdynia Maritime University 

Faculty of Marine Engineering 
Morska Street 81-87, 81-225 Gdynia, Poland 
tel.: +48 58 5586348, fax: +48 58 5586399 

e-mail: miszczak@wm.am.gdynia.pl 
 

Abstract 

This article presents the results of numerical calculations of the hydrodynamic pressure distribution, load 
carrying capacity, friction force and friction coefficient of the slide journal bearing, if the assumed model of 
hydrodynamic lubrication takes into account the dependence of oil viscosity values on its temperature in all three 
directions of the adopted coordinate system, in particular, also across the thickness of the lubricant layer. This 
research considered the slide journal bearing lubricated with the Newtonian oil. The flow of oil was modelled as 
laminar and stationary. The bearing bushing had a full angle of wrap and its surfaces were smooth. In order to obtain 
hydrodynamic pressure distributions, the Reynolds type equation was numerically solved by application of the finite 
difference method (FDM). The numerical procedures for this research were prepared with the Mathcad 15 software. 
When adopting the classic models and simplifications for the hydrodynamic lubrication and a thin boundary layer, it 
is assumed, that the hydrodynamic pressure of lubricating oil does not depend on the position measured across the 
height of the lubrication gap. On the other hand, it is known, that the dynamic viscosity strongly depends on the 
temperature, which is a function of all three spatial variables. The aim of this work is to include, in the hydrodynamic 
lubrication model, the changes of viscosity in the direction of oil film thickness, and to investigate how it will affect the 
hydrodynamic pressure distribution and load carrying capacity of the journal bearing. 
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1. Introduction  
 

Modern constructions of the sliding friction nodes, and what is following this, modern, non-
classical lubrication fluids, where apparent viscosity is a function of the shear rate, make it 
necessary to consider viscosity changes across thin layer of lubricant [4, 5, 12, 13]. Moreover, the 
increased values of adhesion forces in the layer directly adhering to the cooperating surfaces cause 
the effect of changing the oil viscosity across the thickness of the oil film [13]. Another example, 
which justifies the necessity to take the viscosity changes in the direction of layer thickness into 
account, is the fact of temperature changes in the direction of lubricant gap height, which results 
directly from the solution of the energy conservation equation [2, 4, 6, 12]. Such a change in 
temperature in a very thin layer of the lubricant always causes a significant change not so much 
in the viscosity of the lubricant but its gradients in the direction of the thickness of the gap. 

Omission of taking oil viscosity changes across thickness of lubricant layer in previous papers 
of numerous authors [1, 3, 7, 8] in the field of hydrodynamic lubrication theory leads to two basic 
contradictions. The first one is the obvious variation of temperature across the thickness of the 
lubrication gap in the thin lubrication layer, which should, but does not imply similar viscosity 
changes across the thickness of the oil film in the previous solutions. The second contradiction 
arises when the constant viscosity across the thickness of the lubrication gap is assumed, which 
implies a direct influence of pressure on the temperature distribution in solutions, while the 
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influence of temperature on the pressure distribution remains to be taken into account in further 
steps of approximate solutions.  

In this article, author presents analytical solutions of the velocity vector components and 
temperature with taking dynamic viscosity changes across thickness of the lubricating layer into 
account. The article also presents the Reynolds type equation, which allows the numerical 
determination of the hydrodynamic pressure distribution with taking dynamic viscosity changes 
across thickness of the lubricating layer into account.   

The description of the above problem requires consideration of the Reynolds type equation in 
conjunction with the non-linear energy conservation equation. From the practical engineering 
aspects, this model illustrates the interplay of temperature on hydrodynamic pressure and the effect 
of pressure on temperature. 

The purpose of this work is to check what influence on carrying capacity, friction force and 
friction coefficient has taking viscosity changes across layer thickness into account. Therefore, for 
the considerations, a bushing with smooth surface and a full angle of wrap was adopted. Flow of 
the lubricating fluid is laminar, stationary, and non-isothermal. Mass and inertia forces have been 
omitted. The considerations were carried out for the cylindrical coordinate system. The classic 
Newtonian model of the lubricant was adopted, only the influence of temperature on the dynamic 
viscosity change was taken into account. 
 
2. Analytical research  
 

The solution to the problem of hydrodynamic lubrication of transverse slide bearings, omitting 
mass forces and taking viscosity changes with temperature into account, includes the solution of 
basic equations, i.e. equations of momentum conservation, stream continuity and energy 
conservation [1, 4, 9-13]: 

 
d Div
dt

ρ =
v S , (1) 

 div( ) 0ρ =v , (2) 

 vd (c T)div( grad T) div( ) Div
dt

κ + − = ρvS v S ,  (3) 

where: 
cv – specific heat at constant volume [J/(kg·K)], 
t – time [s],  
v – oil velocity vector [m·s−1],  
T – oil temperature distribution in the lubrication gap [K],  
ρ − oil density [kg·m−3],  
κ – lubrication oil conductivity [W/(m·K)].  

Relationship, which describes correlation between coordinates of stress tensor S and shear rate 
coordinates A1 of the lubrication oil of Newtonian properties, was assumed in the following form 
[4, 5, 8-13]: 
 T 1p  = − + ηS I A , (4) 

where: 
I – unity tensor, 
p – hydrodynamic pressure [Pa], 
ηΤ – dynamic viscosity coefficient [Pa·s]. 

In the equation (4), A1 tensor is described by the following relation [4-6, 8-13]: 

 T
1 ,  grad( )≡ + ≡A L L L v , (5) 

356



 
Analysis of the Influence of the Changes in the Value of Dynamic Viscosity Coefficient in the Direction of ... 

where:  
L − tensor of the velocity vector gradient [s−1], 

In analytical considerations, the general function of viscosity variations depending on three 
variables of the coordinate system in the following form was adopted: 

 ),z,r,(TT φη=η   (6) 

where: 
φ – perimeter coordinate,  
z – longitudinal coordinate,  
r – radial coordinate.  

Simplified equation of momentum, stream continuity, and energy conservation for laminar and 
stationary lubrication after omission of the units in the magnitude of the radial relative clearance 
(ψ = 0.001) has the following form [9-13]:  
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0 ≤ φ ≤ 2π, −bm ≤ z ≤ bs, 0 ≤ r ≤ hp, 
where: 
v1 – perimeter component of the oil velocity vector [m·s−1],  
v2 – radial component of the oil velocity vector [m·s−1],  
v3 – longitudinal component of the oil velocity vector [m·s−1],  
T – oil temperature in the lubrication gap [K],  
p − hydrodynamic pressure [Pa],  
R − journal radius [m], 
κ  – heat transfer coefficient [W/(m·K)].  

In order to solve the system of equations (7-11) we integrate equation (7) and (9) twice and 
determining the constant of integration by applying appropriate boundary conditions. To determine 
the radial component of the velocity vector, we transform the continuity equation of the stream 
(10) and then integrate it one time. The integration constant is determined from the appropriate 
boundary condition. Boundary conditions for lubricant velocity components have the form [9-13]: 

 v1=ωR  for  r=0,  and  v1=0  for  r=hp, (12) 

 v2=0  for  r=0,  and   v2=0  for  r=hp, (13) 

 v3=0  for  r=0,  and  v3=0  for  r=hp. (14) 
wherein: 

 [ ]ph ( , z) 1 cos( ) z tan( )cos( )φ = ε ⋅ + λ φ + ⋅ γ φ , (15) 
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where: 
hp – dimensional lubrication gap, 
γ – angle between journal axis and bushing axis, 
ε – radial clearance [m]. 

Perimeter and longitudinal component of the velocity vector have the following [12, 13]:  
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In Eqs. (16, 18) are following notations: 
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where: 0 ≤ φ ≤ 2π, bm ≤ z ≤ bs, 0 ≤ r ≤ hp, hp = hp(φ, z), ηT (φ, r, z).  
Applying the second boundary condition (132) to the solution (17), we obtain the Reynolds 

type equation on the basis of which the hydrodynamic pressure distribution can be determined 
numerically. This equation has the following form: 
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for: 0 ≤ φ ≤ 2π, bm ≤ z ≤ bs, ηT(φ, r, z). 
The solution of the energy equation (11) assuming a constant value of the heat transfer 

coefficient and the adoption of classical boundary conditions (T(φ, r, z) = T0 + fc  for r=0; T(φ, r, z) 

= T0 + fp(φ, z)  for r = hp;  0rforq
r
T

c =−=
∂
∂

κ ) allows to obtain the following form of the 

temperature distribution in the lubricating oil: 
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Load carrying capacity, friction force and friction coefficients are determined from the 
following dependencies [9-13]: 
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3. Numerical calculations 
 

Numerical calculations of hydrodynamic pressure were made using the finite difference 
method, solving the equation (20) for two variants. The first variant assumes that the dynamic 
viscosity depends only on the peripheral and longitudinal variable η(φ,z). In the second calculation 
variant, it was assumed that the viscosity depends on peripheral, radial and longitudinal variable 
η(φ,r,z). In both variants, the dependence of viscosity on temperature is described by the classical 
exponential function. Calculations have been performer in Mathcad 15 software, using own 
calculation procedures. Having hydrodynamic pressure values, load carrying capacity, friction 
forces and friction coefficients were determined for the relative eccentricity λ = 0.1 do λ = 0.9 and 
dimensionless bearing length L1 = 1. For the calculations, journal radius R = 0.02 was assumed, 
angle between journal axis and bushing axis γ = 0, radial clearance ψ = 0.002. Journal radial speed 
was also assumed ω = 400 s–1 and coefficient of viscosity changes in temperature δT = 0.04267 K–

1. Characteristic dimensional value of the dynamic viscosity for the characteristic temperature 
To = 363 K was ηo = 0.01546 Pas. For the calculations, also heat transfer coefficient 
κ = 0.15 W/(m·K) was assumed. 

Calculated on the basis of equation (24) the values of the load carrying capacity in the function 
of relative eccentricity are presented in Fig. 1, while the friction force values determined on the 
basis of equation (25) are shown in Fig. 2. Friction coefficient (26) in a function of relative 
eccentricity is shown in Fig. 3.  

Percentage differences in load carrying capacity, friction force and friction coefficient for both 
calculation variants (variant I: η(φ,z) – viscosity independent from variable r; variant II: η(φ,r,z) – 
viscosity dependent from variable r) are shown in Tab. 1. The change values have been calculated 
based on the following dependencies: 

 C[ ( , z)] C[ ( , r, z)]C 100%
C[ ( , z)]

η φ − η φ
∆ = ⋅

η φ
,  

 Fr[ ( , z)] Fr[ ( , r, z)]Fr 100%
Fr[ ( , z)]

η φ − η φ
∆ = ⋅

η φ
, 

(27) 
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 [ ( , z)] [ ( , r, z)] 100%
[ ( , z)]

µ η φ −µ η φ
∆µ = ⋅

µ η φ
 

 

 
Fig. 1. Values of the load carrying capacity for two calculation variants in a function of relative eccentricity 

 

 
Fig. 2. Values of the friction force for two calculation variants in a function of relative eccentricity 

 

 
Fig. 3. Values of the friction coefficient for two calculation variants in a function of relative eccentricity 
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Tab. 1. Percentage changes of the load carrying capacity, friction force and friction coefficient in a function 
of relative eccentricity  

Relative eccentricity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
ΔC [%] 2.3 3.6 5.4 7.5 10.1 12.8 15.4 18.4 20.1 
ΔFr [%] -7.6 -8.3 -8.7 -8.8 -8.7 -8.0 -6.3 -3.5 2.4 
Δμ [%] -10.1 -12.3 -14.9 -17.6 -20.8 -23.7 -25.7 -26.8 -22.2 

 
4. Conclusions and observations 
 

The following conclusions can be drawn from the analysis of the obtained results: 
‒ load carrying capacity, with taking viscosity changes from the perimeter, radial and 

longitudinal variable into account, is smaller than the load carrying capacity when taking 
viscosity changes only from perimeter and longitudinal variable into account. The difference is 
the smallest for small relative eccentricities of the order of 2-3%, and the biggest for large 
relative eccentricities (18-20%), 

‒ friction force, with taking viscosity changes from the perimeter, radial and longitudinal 
variable into account, is bigger than the load carrying capacity when taking viscosity changes 
only from perimeter and longitudinal variable into account. The difference is fairly constant for 
almost full range of relative eccentricities (6-9%). For the higher relative eccentricities, the 
difference in values of friction forces decreases,  

‒ friction coefficient, with taking viscosity changes from the perimeter, radial and longitudinal 
variable into account, is bigger than the load carrying capacity when taking viscosity changes 
only from perimeter and longitudinal variable into account. The difference is smallest for small 
relative eccentricities of the order of 10%, and the biggest for large relative eccentricities 27%. 
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