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Abstract 

Quadrocopters are nonlinear and inherently unstable systems. To be able to account for the nonlinearities during 
more aggressive manoeuvres nonlinear control methods need to be utilized to obtain the desired position while at the 
same time guaranteeing stability. In the article, the quadrocopter dynamics is modelled using the Newton-Euler 
method. The propeller aerodynamics is modelled using a combination of momentum theory and blade element theory. 
There are two different control objectives; the 1st objective requires the quadrocopter to reach a desired attitude set 
point using, while the 2nd objective requires the quadrocopter to track an attitude trajectory. In both cases, Lyapunov 
stability criterion, in conjunction with LaSalle’s invariance principle, is used to guarantee the system becomes 
asymptotically stable. In the case of reaching the desired attitude set point, a direct Lyapunov control method is 
implemented with the control constants determined empirically. For the trajectory tracking, limited knowledge is 
assumed on the system dynamics and the Mamdani fuzzy controller is used with a rule base that satisfy the Lyapunov 
stability criterion. The fuzzy membership functions developed empirically and a centre of gravity defuzzification 
method is used. All simulations are done in MATLAB/Simulink. The results of the numerical simulation are presented 
in the article. 
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1. Introduction 
 

Vertical take-off landing (VTOL) aircraft, such as helicopters and quadrocopters, have been 
able to realize complex missions in which manoeuvres are required that their fixed winged 
counterparts are unable to do. The unique use of VTOL aircraft together with the mechanical 
simplicity of quadrocopters has led to the rise in their popularity with applications including search 
and rescue, surveillance, inspection mapping, filming, etc., which are implemented by attaching 
the vision system or manipulator to a flying robot [2]. The increase in applications results in the 
need for quadrocopters with more aggressive manoeuvres and better hovering performance. 

Classical control methods, such as PID, have been implemented in quadrocopters with success 
around hover position [10]. Optimal control has also been applied in quadrocopters such as LQR 
[7] and H-infinity control [9] with good results around the linearized position. 

To be able to synthesize a controller a mathematical description of the system is a prerequisite. 
The Newton-Euler equations, which describe the rotational and translational dynamics of a system, 
have been widely used in the modelling of quadrocopters. While this method uses Euler angles, 
which the disadvantage of “gimbal lock” the quadrocopter would avoid manoeuvres that place it in 
such a situation. The aerodynamics of the propellers is approximated using a combination of 
momentum theory and blade element momentum theory called blade element momentum theory 
(BEMT) [5, 8, 12]. 

The quadrocopter dynamics can be further split into two separate parts: the attitude dynamics 
and the translation dynamics. Due to the under actuated nature of the quadrocopter the translation 
dynamics are dependent on the attitude dynamics. The scope of this article only covers the control 
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of the attitude dynamics, in which two different control objectives are set. In the first case, 
a desired attitude set point is to be reached while in the second case an attitude trajectory is to be 
tracked. For the first case, a direct Lyapunov control is proposed, while in the second case a fuzzy 
controller with rules based on Lyapunov stability is proposed. 

The rest of the paper is organized as follows. Section two provides the mathematical 
description of the quadrocopter dynamics and the propeller aerodynamics. The control schemes, 
which consist of the Lyapunov control and the fuzzy Lyapunov based approach, are discussed in 
Section three. Numerical results of the simulation are presented in Section four. The concluding 
argument is made in Section five. 
 
2. Mathematical model of a quadrocopter 
 

The quadrotor dynamics will be based on the Newton-Euler method [11], the assumptions 
made for this model is that the earth is flat and non-rotating so that we can place the fixed frame 
on the surface of the earth, this is a reasonable assumption since the quadrotor flies at low altitude 
and distances. Another assumption made is that the quadrotor body can be treated as a completely 
rigid structure. Fig. 1 shows the body fixed coordinates.  
 

 
Fig. 1. Body-fixed coordinates 

 
The equations of motion of the quadrotor are obtained and are: 

 

where P, Q, R are the pitch, roll and yaw rates respectively, Jp is the propeller inertia, ωi is the 
angular velocity of the i-th propeller, CT and CQ are the thrust coefficient and torque coefficient 
respectively. The kinematic angles φ, θ, and ψ are the pitch, roll and yaw angles, respectively. 
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The motors used to drive the quadrotor propellers are brushless direct current (DC) motors, 
their use in quadrotors is widespread due to their many advantages such as high reliability and 
longer lifetime due to the absence of mechanical commutators. The equation used to describe the 
motor dynamics is: 
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The aerodynamics of the propeller blades are modelled using a combination of Momentum 
Theory and Blade Element Theory called Blade Element Momentum Theory (BEMT) [5]. This 
method assumes two dimensional blade elements, which are then integrated over the span of the 
propeller [3]. Assumptions made are that blade flapping is neglected, the relative inflow angle 
is small, the drag is much smaller than lift and that the perpendicular component of velocity is 
significantly smaller than the tangential velocity. From this the equations for the thrust and torque 
coefficients are given as: 
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3. Control schemes 
 
3.1. Lyapunov stability 
 

Lyapunov’s direct method, which is also known as Lyapunov’s second method, gives us the 
possibility to determine the stability of the system without having to integrate the full differential 
equation. This method uses the concept of the “measure of energy” of the system. If it is possible 
to find such a measure, then one can study the rate of change of energy of the system to deduce if 
the system is stable. For this case, we will assume that the system is time invariant, if the system 
has an energy function, V(x), and a lie derivative ( )V x , which is given as: 
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Then the sufficient conditions for stability are: 
i) if V(x) is locally positive definite and ( ) 0V x ≤  locally in x then the origin of the system is 

locally stable in the sense of Lyapunov. 
ii) if V(x) is locally positive semi-definite and decrescent, and ( ) 0V x ≤  locally in x, then the 

origin of the system is uniformly locally stable in the sense of Lyapunov. 
iii) if V(x) is locally positive definite and decrescent, and ( )V x−   is locally positive definite, then 

the origin of the system is uniformly locally asymptotically stable. 
The Lyapunov based controller was done based on work of Bouabdallah [1], the Lyapunov 

candidate function is chosen to be positive definite about an equilibrium point, denoted Xe.  
The control inputs are then chosen in a way that the lie derivative is negative semi-definite. Since 
the system is autonomous, we can use LaSalle’s invariance principle [4] to prove asymptotic 
stability. 
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where x1 = P, x3 = Q and x5 = R. 
The control inputs can then be chosen as: 
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where values of k1, k2 and k3 should always be positive constants to keep the function negative 
semi-definite. 
 
3.2. Fuzzy-Lyapunov based controller 
 

Fuzzy controllers are an implementation of common sense or that of knowledge of a human 
operator. The implementation of this “common sense” though, is not such a trivial matter. As seen 
in the previous section, designing a system based on knowledge of a Lyapunov function creates 
a stable controller for nonlinear autonomous systems, as is the case with the quadrotor. We can 
base the fuzzy rules on the Lyapunov approach [6] to devise an adaptive controller that exhibits 
asymptotic stability. We will assume that we know very little about the system dynamics with this 
limitation we will try to synthesize a tracking controller. The partial knowledge we have of the 
plant is: 
a) the roll angular acceleration, 1x , is proportional to the control input U1, 
b) the pitch angular acceleration, 3x , is proportional to the control input U2, 
c) the yaw angular acceleration, 5x , is proportional to the negation of the control input U3, 
d) 563412 ,, xxxxxx ===  . 

Since it is a tracking problem, we will want to minimize the error as well as create a stable 
system. We then take the tracking error and derivative of the tracking error as: 
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We then take a candidate Lyapunov function and its respective lie derivative as: 
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For our instance, we can neglect the term created by the 2nd derivative of the desired function 
since it would only slightly increase accuracy while requiring more computational cost. The same 
is done for pitch and yaw and we obtain the final derivatives: 
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To obtain asymptotic stability the fuzzy rules are proposed so that 0V ≤ :  
R1:  IF 2e  is positive AND e2 is positive THEN U1 is negative, 
R2:  IF 2e  is positive AND e2 is zero THEN U1 is negative, 
R3:  IF 2e  is positive AND e2 is negative THEN U1 is zero, 
R4:  IF 2e  is negative AND e2 is positive THEN U1 is zero, 
R5:  IF 2e  is negative AND e2 is zero THEN U1 is positive, 
R6:  IF 2e  is negative AND e2 is negative THEN U1 is positive, 
R7:  IF 4e  is positive AND e4 is positive THEN U2 is negative, 
R8:  IF 4e  is positive AND e4 is zero THEN U2 is negative, 
R9:  IF 4e  is positive AND e4 is negative THEN U2 is zero, 
R10:  IF 4e  is negative AND e4 is positive THEN U2 is zero, 
R11:  IF 4e  is negative AND e4 is zero THEN U2 is positive, 
R12:  IF 4e  is negative AND e4 is negative THEN U2 is positive, 
R13:  IF 6e  is positive AND e6 is positive THEN U3 is positive big, 
R14:  IF 6e  is positive AND e6 is zero THEN U3 is positive small, 
R15:  IF 6e  is positive AND e6 is negative THEN U3 is zero, 
R16:  IF 6e  is negative AND e6 is positive THEN U3 is zero, 
R17:  IF 6e  is negative AND e6 is zero THEN U3 is negative small, 
R18:  IF 6e  is negative AND e6 is negative THEN U3 is negative big, 
where e2, e4, e6 and their time derivatives are the controller inputs, U1, U2 and U3 are the controller 
outputs, the negative and positive specified for input variables are fuzzy sets with trapezoidal-
shaped membership function (10), the negative small, zero and positive small are fuzzy sets with 
Gaussian-shaped membership function (11), and the negative, negative big, positive and positive 
big specified for the outputs are the fuzzy sets with Z-shaped (12) and S-shaped (13) membership 
functions, respectively. 
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4. Results of simulations 
 

The simulations were carried out for the parameters of the quadrocopter’s model presented 
in [1]. The Lyapunov controller was tested for k1 = k2 = 0.05, k3 = 0.5. The parameters of fuzzy-
Lyapunov controller were empirically selected during simulations. The membership functions 
parameters are presented in Tab. 1. The implication and conjunction operations are performed using 
minimum method, while the defuzzification is carried out using centre of gravity method [13]. 

The results of simulations are presented in Fig. 2 and 3. The roll step response using the 
Lyapunov based control is shown in Fig. 2. Fig. 3 presents the roll and yaw responses for tracking 
control. Since the membership functions and rules are the same for roll and pitch, only roll and 
yaw are shown. For the control signal to be tracked, a sinusoidal function is used, for roll with 20º 
amplitude and a frequency of 0.5 rad/s, and for yaw an amplitude of 10º with a frequency of 
0.1 rad/s. For the Lyapunov control the roll and pitch settling time was about 23 seconds with an 
overshoot of about 17%.  
 

Tab. 1. Fuzzy membership functions parameters 

input/output 
variable fuzzy set membership 

function 
parameters of membership function 

a b c d σ µ 

e2, e4, e6 
negative trapezoidal –1 –1 –0.75 0   

zero Gaussian     0 0.025 
positive trapezoidal 0 0.75 1 1   

2 4 6, ,e e e    negative trapezoidal –1 –1 –0.75 0   
positive trapezoidal 0 0.75 1 1   

U1, U2 
negative Z-shaped –0.1 0     

zero Gaussian     0 0.005 
positive S-shaped 0 0.1     

U3 

negative big Z-shaped –0.08 –0.05     
negative small Gaussian     0.01 –0.03125 

zero Gaussian     0.025 0 
positive small Gaussian     0.01 0.03125 
positive big S-shaped 0.05 0.08     
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Fig. 2. Roll step response (Lyapunov control) 

 

  
Fig. 3. Roll and yaw responses for trajectory tracking (fuzzy controller) 

 
5. Conclusions 
 

The idea behind Lyapunov based control was to create a stable system, even at large angles 
where the effects of the nonlinear dynamics are dominant. The controller was able to stabilize the 
quadrocopter even at high angles. The positive constants were not optimized. Further research 
should concentrate on optimization of the constants. The fuzzy controller based on Lyapunov 
stability showed promise, being able to track the desired trajectory with high accuracy for both 
pitch and roll even without complete knowledge of the system. The yaw angle tracking was not 
smooth and this was because the partial model did not account for the effects of the propeller 
dynamics 
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