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Abstract 

The article presents results of simulation of six-degrees of freedom motion for a missile subjected to atmospheric 
turbulences. Therefore, an applied mathematical model of motion includes description of stochastic turbulences 
influencing on missile flight. Both models of the motion as well as of turbulences are shortly presented. The motion 
model is typical for exterior ballistic problems – the spatial motion of the rigid body is described. Detailed formulas 
for aerodynamic forces and moments acting on the missile are presented. The much attention has been paid to the 
model of turbulence. This is the stochastic model based on the Power Spectral Densities and the Shinozuka’s method 
of stochastic processes simulations. They allow reconstructing a spatial structure of the wind field. 

Model validity was assessed by comparing the calculation results with the data recorded during shooting on the 
range. Result of series of simulations allows determining the missile sensitivity to this case of disturbances. Exemplary 
results of simulations are shown. The main important of them allow determining an influence of the turbulence on a 
point of the missile fall. 

Keywords: missile dynamics, stochastic turbulences, numerical simulations. 
 
1. Introduction  

 
A maximum accuracy and precision are the main goal during missile shooting, which can be 

performed in various atmospheric conditions. Aerodynamic forces are the main forces acting on 
the missiles. They directly depend on the missile velocity relative to the air. Therefore, 
atmospheric turbulences may be a significant factor affecting the missile motion. Depending on 
them a different point on the Earth’s surface can be reached. This means that turbulences influence 
on the accuracy and precision of the missile. The main problem is to determine the sensitivity of 
the missile to this kind of disturbances. This problem can be resolved experimentally or in the way 
of theoretical investigations.  

To resolve this problem theoretically the 6-DOF mathematical model of missile motion has to 
be applied. We can find a lot of similar each other models in the literature [1-4, 6, 12, 15-17, 20]. 
In this article, a model of the missile with variable mass is used. It is described in details in [8]. 
This model includes changes of missile mass characteristics during burning process. Thrust is not 
treated as the external force and is calculated on the basis of a solution of inner ballistic problems 
[8, 10, 11, 23, 24]. The used model also describes the jet damping effect [21], but this effect is the 
second of importance, as it is shown in [8]. 
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Applied in this article description of atmospheric turbulences takes into account stochastic 
character of the wind field. To determine this field, the Shinozuka’s method was applied, which 
was translator used to model earthquakes [18, 19] and is adopted to simulate turbulences treated as 
the stochastic processed [9, 13]. 
 
2. Mathematical description of the missile motion 
 
Coordinate systems 
 

The following orthogonal coordinate systems were used to determine motion equations of the 
missile: Oxgygzg – the Earth-referenced system with its origin O at any fixed point of the missile, 
Oxyz – the missile-fixed system with the origin at point O, Oxayaza – the air trajectory reference 
frame. The origin O is the centre of mass of the missile after the combustion process.  

These systems are related to each other by means of the following angles: (Ψ – yaw, Θ – pitch, 
Φ – roll) for systems Ogxgygzg and Oxyz and (α – angle of attack, β – sideslip angle) for systems 
Ogxgygzg and Oxyz. The transformation matrices between systems /from Oxgygzg to Oxyz and from 
Oxayaza to Oxyz/ are as follows: 
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where: cP=cosΨ, sP=sinΨ, cT=cosΘ, sT=sinΘ, cF=cosΦ, sF=sinΦ, cA=cosα, sA=sinα, cB=cosβ, 
sB=sinβ. 
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Fig. 1. Coordinate systems, static aerodynamic forces, angles and velocities 

 
Equations of translator motion 
 

In Oxyz system six scalar equations of translatory and rotational motions taken from [8] are as 
follows:  

 ( ) ( ) TFUmxxmmaRQSRVQWUm xCrelECCrelxx +=+−+++−−+ ___
22 2)( 

 , (2a) 

 ( ) yECCrelx FxxRmmRURPQSPWRUVm =−++++−+ )(22)( _ 

 , (2b) 

 ( ) zECCrelx FxxQmmQUQPRSQUPVWm =−−−−+−+ )(22)( _ 

 , (2c) 
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 LPI x = , (2d) 

 MUxmQQUPVWSIIPRQI
i

ireliixxy =+−+−−+ ∑ _2)()(  , (2e) 

 NUxmRPWRUVSIIPQRI
i

ireliixxz =+−++−+ ∑ _2)()(  , (2f) 

where we have: nozzlechamberfuelfuselage mmmmm +++=  – missile mass, fuelmm  =  – mass flow rate, 

fuelmm  =  – acceleration of mass change, (Ix, Iy, Iz) – inertia moments, (mi, xi) – mass and 
coordinate of i-th elementary mass of the combustion – products inside the missile, 

[ ]TO WVU ,,=V  – the velocity of the pole O relative to the Earth, [ ]TRQP ,,=ω  – the angular 
velocity of the missile, – ∑=

i
iix mxS  – the static moment of the missile, mSx xC /=  – the 

coordinate of the mass centre, xE – the coordinate of the nozzle exit, 
m

xx
mU Cfuel

Crel

−
⋅= _

 
– the 

relative velocity of the mass centre, CrelCrelx U
m
ma ___ 2


−=
 
– the relative velocity of the mass 

centre, [ ]Tzyx FFF ,,=F – the sum of aerodynamic and gravitational forces, T – the thrust, 

[ ]TOOOO NML ,,=M – moments relative to the pole O. 
Equations (2) are obtained assuming that the missile has two symmetry planes. They are 

complemented by kinematic relations for rates of roll, pitch and yaw and for components of 
velocities in relation to the Earth: 

 , (3a) 

 Φ−Φ=Θ sincos RQ , (3b) 

 ( ) ΘΦ+Φ=Ψ cos/sincos QR , (3c) 
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3. External forces end moments 
 

The external force F is the sum of the weight Q and the aerodynamic force Faer. Whereas, the 
aerodynamic moment MO relative to the pole O is the sum of the moments generated by the weight 
MQ and the aerodynamic moment Maer:  

 aerFQF += , aerQO MMM += . (5) 

In Oxyz system, the weight has following components [ ]TcFcTsFcTsTmg ⋅⋅−= ,,Q . It 
produces moment [ ]TCCQ sFcTxcFcTxmg ⋅⋅⋅⋅−= ,,0M . 

To calculate aerodynamic forces and moments one has to know the missile velocity relative to 
air wOaer VVV −=  where Vw is the wind (turbulence) velocity. 

The aerodynamic forces and moments can be divided into static and dynamic. Static forces and 
moments are determined on the basis of the nutation angle, which is calculated on the basis of 

( ) ΘΦ+Φ+=Φ tgQRP sincos
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angle of attack α and sideslip angle β: 

w

w

UU
WW

−
−= arctanα , 

22 )()(
arctan

ww

w

WWUU
VV

−+−
−=β , ( )αββδ 222 sincossinarcsin += . 

While, the dynamic forces and moments are created when the missile is rotating. The resultant 
aerodynamic force Faer is equal to the sum of forces set out below: 

 pdfMLDaer FFFFF +++=  or pdfMNXaer FFFFF +++= . (6) 

To determine aerodynamic forces and moments acting on the missile the following unit vectors 
of coordinate systems have to be used: unit vectors i, j, k of the system Oxyz and unit vectors ia, ja, 
ka of the aerodynamic system Oxayaza. Summary expressions for these forces and moments are 
shown in the table below. 
 

Forces & 
Moments General formula Components in Oxyz 

system Scalar value Coefficient & Comments 

Aerodynamic forces: pdfMLDaer FFFFF +++=  or pdfMNXaer FFFFF +++=  

Static aerodynamic forces 
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force FD 
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This force is parallel to the 
trajectory, and is directed 
opposite to the velocity vector 
of the missile.  

Lift force 
FL 
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2

20 δδδδ LLL CCC +=  
This force lies in the drag 
plane and is perpendicular to 
the trajectory and hence to the 
velocity of the missile. 

Axial 
force FX 
 

i⋅−= SVC aer
xX 2

2ρF  [ ]Taer
xX SVC 0,0,1

2

2ρ−=F  
SVCF aer

xX 2

2ρ=  4
4

2
20 δδ δδ xxxx CCCC ++=  Cx>0 

This force is parallel to the 
longitudinal axis of the 
projectile and has opposite 
sense. 

Normal 
force FN 

( )[ ]aiii ××⋅

⋅⋅=

        
2

2

δ
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N
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2
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This force is perpendicular to 
the longitudinal axis of the 
missile and lies in the drag 
plane. 

Dynamic aerodynamic forces 

Magnus 
force FM  
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2

20
δ
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0<

pNC  
This force arises when the 
missile rotates with the 
angular velocity P about the 
longitudinal Ox. It is 
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perpendicular to the drag 
plane.  

Pitch 
damping 
force Fpdf 
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22 RQQt +=  
The angular velocities Q and R 
and the rate of change of the 
nutation angle δ generate 
additional dynamic force, 
which also produce damping 
moment.  

Aerodynamic moments 
Msdmpdmomaer MMMMM +++=  

Static aerodynamic moment 
Over- 
turning 
moment 
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This moment arises because 
the centre of pressure does not 
coincide with the mass centre 
of missile as well as with the 
pole O.  

Dynamic aerodynamic moment 
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damping 
moment 
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This moment arises if the 
missile has angular velocities 
Q and R and if there is a rate 
of change of the nutation angle 
δ. 
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damping 
moment 
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If the missile is rotated about 
the longitudinal axis, the 
rotation is decelerated due to 
air viscosity.  
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2
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This moment arises because 
the Magnus force is applied 
outside of the centre of mass. 

ρ – air density, Ci – coefficients of aerodynamic forces and moments, d – diameter of the missile, S – reference area. 
 

Aerodynamic coefficients are determined using PRODAS software [14], which theoretical base 
can be found in [5]. Exemplary courses are shown in Fig. 2 and 3. 
 
 
 

  

Fig. 2. Drag coefficient Cx0 Fig. 3. Pitch moment coefficient Cmδ 
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4. Model of the turbulence 
 

The wind is dependent on time and space, but very often, it is assumed that it is only function 
of space ),,( gggww zyxVV = . This assumption is based on the Taylor's “frozen turbulence” 
hypothesis. According to this hypothesis, the advection velocity of the turbulence is much greater 
than the velocity scale of the turbulence itself. The velocity Vw has two component – one with the 
constant value and direction and the second, which is various. In this article, the first component is 
omitted and the second is treated as the stochastic process representing atmospheric turbulence. To 
describe this turbulence Shinozuka's method was applied [9, 13, 19, 20]. This method is very 
useful to numerical simulation of stochastic processes. Originally, it was dedicated to simulate 
earthquakes. In this method, any stochastic process is written as a sum of periodic functions, 
amplitudes of which depend on the so-called Power Spectral Density Φ (PSD). Phases of these 
functions are random “white noise”. The formula for i-th component of Vw is as follows: 

 ( ) ( )jll

i

j

L

l
lijiw H φ+∆= ∑∑

= =

rΩΩΩrV '

1 1
_ cos2)( , (7) 

where: lΩ  – the vector of „spatial” frequency, '
lΩ  – the perturbed vector of „spatial” frequency; 

r=[xg,yg,zg] – the vector determining position of the point under consideration; jlφ  – the mutually 
independent and stochastically variable phase displacements of values 0-2π; H – the lower 
triangular matrix of amplitudes related to the matrix of Power Spectral Density Φ by means of the 
following dependence: 

 )()()( ΩHΩHΩΦ T
⋅= . (8) 

Nonzero components of matrix H(Ω) can be determined if PSD is known: 

1111 Φ=H , 112121 / HH Φ= , ( )2
212222 HH −Φ= , 

113131 / HH Φ= , 32 32 31 21 22( ) / ,H H H H= Φ −  ( ) ( )2
32

2
313333 HHH −−Φ= . 

As it is above visible, to determine matrix H the Power Spectral Density Φ must be known. It 
can be determined on the basis of available measurements of wind field fluctuations, or using 
specific expressions presented in the literature. One of the most popular is the Dryden's spectrum 
used in flight mechanics [7, 9, 13]. We can find three variants of spectrums: 
− one dimensional spectrum: 
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2
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Ω = + Ω 
   + Ω  + Ω  
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− two dimensional spectrum: 

 

( )

( )
( )

( )

2 2 2 2

2 2
2 2 2 2
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w x y x y w
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w x y
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L L
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L L

σ
π

 + Ω + Ω − Ω Ω
 
 Ω Ω = − Ω Ω + Ω + Ω
  + Ω + Ω  Ω + Ω   

Φ  (9b) 

− three dimensional spectrum: 
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where: Lw – the scale of turbulence, σ – the standard deviation of turbulence. 
On the basis of (7) components of the turbulence in Oxgygzg system can be calculated as 

follows: 
− for one dimensional spectrum (yg=const, zg=const): 
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for two dimensional spectrum (zg=const): 
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− for three dimensional spectrum: 
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Additional subscript “g” shows that velocity components are determined in Oxgygzg coordinate 
system. 

For calculations boundary values of „spatial” frequency, must be defined: 
 upper lower xxx Ω≤Ω≤Ω , upper lower yyy Ω≤Ω≤Ω , upper lower zzz Ω≤Ω≤Ω  (13) 

and next ranges of frequencies are respectively divided into Lx, Ly and L − subintervals in the 
manner: 
 xxxx L/)( lower upper  Ω−Ω=∆Ω , xyyy L/)( lower upper  Ω−Ω=∆Ω ,   upper  lower( ) / .z z z xL∆Ω = Ω − Ω  (14) 

The subsequent values of frequencies in (10) are calculated with formulas: 
 xxxxl l

x
∆Ω−+Ω=Ω )1(lower , yyyyl l

y
∆Ω−+Ω=Ω )1(lower , zzzzl l

z
∆Ω−+Ω=Ω )1(lower . (15) 

The perturbed vector of „spatial” frequency '
lΩ  in (7) is randomly perturbed vector lΩ , which 

is determined to avoid periodicity of the simulated turbulence. It has following components: 

 
xxx xlxlxl Ω+Ω=Ω δ

,
, 

yyy ylylyl Ω+Ω=Ω δ
, , 

zzz zlzlzl Ω+Ω=Ω δ
,

. (16) 

Each perturbation must satisfy the condition which e.g. for x component has the form: 

  5.0 xxlx
∆Ω⋅<<Ωδ ,  5.0 yyly

∆Ω⋅<<Ωδ ,  5.0 zzlz
∆Ω⋅<<Ωδ . (17) 

Phase displacements 
xjlφ , 

yxljlφ , 
zyx lljlφ  (j = 1, 2, 3) are mutually independent, randomly 

variable, and included in the range of 0-2π.  
 

5. Results of simulations 
 

Simulations were performed for the missile ICP-1 which is used by Polish Military Forces as 
a target for antiaircraft training reason /see Fig. 4/. The basic data of the missile are as follows: 
initial mas 5.36 kg, fuel mass 1.13 kg, diameter 57 mm, length 1100 mm, engine-working time 
0.7 s.  

At the beginning of simulations, the described above model of missile motion was tested by 
comparing its results with data recorder during real firing tests. In Fig. 5 and 6, we can see 
comparison for flight velocity and trajectory for the initial conditions: the pitch angle Θ=450, the 
initial velocity Vaer=40 m/s. We can see good comparison between theoretical calculations and real 
data despite of differences between theoretically calculated and measured thrust – Fig. 7.  

 

 
Fig. 4. ICP-1 missile Fig. 5. Flight velocity of the missile 
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Next simulations were performed including shown above stochastic description of the 
turbulence. The two dimensional PSD were used. Components of the PSD are presented in Fig. 
8−10. Parameters of turbulence were as follows: the scale of turbulence Lw =400 m, the standard 
deviation of turbulence σ =5 m/s. During each simulation, different profile of turbulence was 
obtained. It is shown in Fig. 11 where exemplary courses of Wwg t(t) turbulence component for two 
simulations are presented. As it was assumed, we can see that the courses are different each other 
although they both have the same parameters of stochastic description. 
 

  
Fig. 6. Trajectory of the missile Fig. 7. Theoretical and measured thrust 

 

  
Fig. 8. PSD Φ11 component Fig. 9. PSD Φ33 component 

 

 
 

Fig. 10. PSD Φ12 component Fig. 11. Wwg component of turbulence 
 

  
Fig. 12. W component of linear velocity Fig. 13 Vertical trajectory 
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Fig. 14. Rolling angular velocity P Fig. 15. Yaw angle Ψ 
 

Figures 12-15 show courses of a few flight parameters for calm and turbulent atmosphere 
versus time. They were obtained for the same initial conditions as above i.e. Θ=45o, Vaer=40 m/s. 
For the sake of comparison, each diagram also shows results for the case of calm atmosphere. 
They are represented with a black dotted line. We can find only small influence of turbulence on 
some courses. The most visible effect is for the rolling angular velocity P /Fig. 14/ and for the yaw 
angle Ψ  /Fig. 15/. However, detailed analysis shows that even small disturbances of the flight 
parameters cause important influence on the point of missile fall. Fig. presents these points 
obtained for twenty-four simulations for the pitch angle equal to 400. The coordinates of the fall 
point without turbulence are respectively mg=4407.6 m and yg=-1.752 m. It means that the 
trajectory of the missile deviates to the left. In the case of turbulence, the average values of 
coordinates are as follows: xg av=4362.75 m and yg av=-1.74 m. Their standard deviations are equal 
to: σx=58.47 m and σy =0.015 m. It shows that turbulence strongly impacts on the firing range of 
missile. It is important if the high precision is required. Comparing shown above xg coordinates we 
can see that the turbulence reduces the range of the missile. The reason is that the mean 
aerodynamic-drag coefficient increases because of the increased nutation angle (Fig. 17). 
 

  
Fig. 16. Points of the missile fall on the horizontal plane 

Oxgyg 
Fig. 17. Aerodynamic drag coefficient during missile 

flight 
 
6. Conclusions 
 

The conducted analysis has proved that the effect of turbulence on the missile accuracy may be 
essential and should be taken into account when planning the precise firing. Stochastic nature of 
the atmospheric turbulence results in the random distribution of points of fall. Turbulences 
increase the nutation angle during the missile flight and result in the reduction of the range of 
firing. Further studies will cover the question of determining final parameters of the missile flight 
in the wind, depending on initial pitch angle and parameters that describe the wind field. 
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