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Abstract 

The article presents the method of analysing the operating process of Star military vehicles in their readiness 
aspect. The subject of research was the Military Economic Unit, recently created in the Polish Army. Markov 
processes were applied. A simple 5-state model was built, and the research was made in a discrete, as well as 
continuous time. The limit probabilities, both for the chain and the time, were estimated. Thanks to Chapman-
Kołomogorov-Smoluchowski equations, the long-term projections could be estimated. To ensure of operating 
processes, correctly object’s permissible transitions from the previous state to the next one were chosen. It was defined 
based on technical documentation and owned operational knowledge on the considered operating process. The 
mathematical description of a set of permissible transitions includes a matrix of permissible Si → Sj transitions from the 
previous state Si (lines) to the next one. The five-state system has possible and forbidden transitions are presented. 
Graph of permissible transitions for the five-state operation model usage, standby, maintenance, repair, standstill in 
repair; correlogram for the average duration of the state; evolution of the probability of the Star cars’ staying in the 
state of usage, standby, maintenance, repair, standstill in repair are presented in the article.  
Keywords: operation, Markov processes, military vehicles, Military Economic Units 

1. Introduction

Military Economic Units are part of the executive logistics of the Polish Armed Forces. Their 
task is to provide financial and economic services for the military units stationing in the area of 
their responsibility. The reason for their formation was the necessity to create a uniform security 
system, which is common for various types of the armed forces, and which provides the imple-
mentation of logistics and financial processes by specialised military units, as well as organisation 
of economic allocations with coordination at the central level, coherent in terms of budgeting and 
logistics tasks [4]. The tasks implemented by Military Economic Units largely include transport 
processes, which results from the necessity to carry out supply tasks. The unit, which was selected 
for studies, released registration and accounting documentation of forty Star vehicles, which covers 
two calendar years: 2012 and 2013. On the basis of the obtained information, an analysis of this 
process was made, and the Markov models were formulated in discrete and continuous time. 

2. Formulation and analysis of registration states of vehicles

The operation system research requires the determination of all relevant factors that define it. 
Secondary factors – which unnecessarily complicate the model without a significant improvement 
in its quality, should be ignored, secondary states should be omitted, and as a result, similar ones 
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should be grouped. A detailed definition of states allows thoroughly studying the system; however, 
it also imposes high demands on empirical data used to construct the model. However, in case of 
the overall study of the operation system, the minimum number of its distinguishable states, which 
allows calculating the system’s basic operating indicators, is sufficient. In case of the studied 
operation system of vehicles, there are the states of usage – S1, being at a standby – S2, 
maintenance – S3, repairs – S4 and standstill in repair – S5.  

In order to ensure high quality of a model of operating processes, it is necessary to correctly 
choose the object’s permissible transitions from the previous state to the next one [2]. It was 
defined on the basis of technical documentation and owned operational knowledge on the considered 
operating process. The mathematical description of a set of permissible transitions includes a matrix 
of permissible Si → Sj transitions from the previous state Si (lines) to the next one Sj (column) 
during the process. The five-state system has possible and forbidden transitions as presented in 
Tab. 1 and in Fig. 1. 
 

Tab. 1. Matrix of permissible transitions for the five-state operation model [source: own development] 

↓Si → Sj S1 S2 S3 S4 S5 
S1 0 1 1 1 1 
S2 1 0 1 1 1 
S3 1 1 0 1 1 
S4 1 1 1 0 1 
S5 0 0 1 1 0 

 

 

Fig. 1. Graph of permissible transitions for the five-state operation model: S1 – usage, S2 – standby, S3 – maintenance, 
S4 – repair, S5 – standstill in repair [source: own development]  

 
The condition for using the Markov processes is fulfilment of the assumption about the lack of 

history of a stochastic process. The seasonality of the studied process excludes the strict fulfilment 
of this assumption, but it does not exclude the use of the Markov models for sufficiently long 
periods of time, when deterministic seasonal fluctuations are averaged. The minimum averaging 
time is normally determined on the basis of the AFC and PACF autocorrelation functions [3].  

The example graph of ACF and PACF functions for the S2 state was presented below. 
The Gretl charts, as shown in Fig. 2, reflect the weekly seasonality (ACF) and ignorable treatment 

of the process history older than 30 days (ACF < 0.3). Therefore, the Markov models cannot refer 
to the periods shorter than averaging/smoothing the estimates of parameters and projections.  

In case of shorter periods of averaging the parameters and projections, pij and pi standardisation 
conditions are not met. The probabilities and characteristic times, which are calculated on the basis 
of the Markov models of the studied operating processes, should be averaged for the periods of at 
least one month.  
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Fig. 2. Correlogram for the average duration of the S2 state. Delays up to 50 [source: own development] 

 
3. Markov model in discrete time 
 

The first stage of the construction of the five-state Markov model is the estimation of transition 
probabilities, as the values of pij

^ estimators of the pij elements, and the P matrix of transition 
probabilities. The values of these estimators of the sample are frequencies of the wij transitions 
from the Si state to the Sj state: 
 pij

^ = wij = nij / trni ,  (1) 
where: 
nij – number of transitions from the Si state to the Sj state,  
trni – number of all transitions (output) from the Si state,  
wij – frequency of the wij transitions from the Si state to the Sj state,  
ni – number of observations of the Si states in the sample.  

Estimated pij elements of the P matrix were given in Tab. 2.  
 

Tab. 2. Values of pij elements of the P matrix of the five-state operation model [source: own development] 

pij S1 S2 S3 S4 S5 
S1 0 0.298367 0.254286 0.155918 0.29143 
S2 0.264756 0 0.266467 0.163388 0.30539 
S3 0.253066 0.298851 0 0.156173 0.29191 
S4 0.230368 0.272055 0.231857 0 0.26572 
S5 0 0 0.6199 0.3801 0 

 
In order to assess simulation usefulness of the pij

^ estimators, maximum errors of the Δ estimation 
were calculated for central confidence intervals, and the δ relative estimation errors. The results of 
the calculations were shown in the below tables (Tab. 3 and 4), for the confidence interval of 95%. 
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Tab. 3. Relative percentage errors of estimation of the P matrix elements of the five-state operation model [source: 
own development] 

δij % S1 S2 S3 S4 S5 
S1 0 6.59881 6.802945 7.23774 6.631359 
S2 6.21603 0 6.208793 6.630703 6.041825 
S3 6.786613 6.575305 0 7.213378 6.607813 
S4 8.797633 8.556083 8.78912 0 8.593184 
S5 0 0 4.522261 5.775212 0 

 
Tab. 4. Absolute percentage errors of estimation of the P matrix elements of the operation model [source: own 

development]  

Δij % S1 S2 S3 S4 S5 
S1 0 22.1164 26.75316 46.42006 22.75466 
S2 23.47832 0 23.30041 40.58268 19.78402 
S3 26.81754 22.00164 0 46.18828 22.63685 
S4 38.1894 31.45033 37.90749 0 32.33877 
S5 0 0 7.29514 15.19395 0 

 
The estimation errors of the P matrix elements of the five-state model are not so large. Most of 

the errors have a limit value of 20%, and prognostic quality of this model is fairly satisfactory. 
Then, the ergodic probabilities were calculated. In case of the Markov chain, the linear matrix 

equations are solved:  
 (PT *∏ = ∏) ∧ (Σj pj = 1)  (∏T *(P – I) = 0) ∧ (Σj pj = 1) , (2) 
where ∏ = [pj]nsx1, I – unit matrix.  

The linear matrix equations for pj with Λ and P matrices are homogeneous. According to the 
theory of linear equation systems, they always have zero singular solutions, and can have ∞ non-
zero solutions dependent on one or more parameters [4]. Therefore, they are solvable only with the 
standardization condition of limit probabilities. After the conversion to the canonical form, a system 
of ns + 1 linear equations with the reduced by 1 ns number of the pj unknowns, which should be 
examined according to the Kronecker-Cappella theorem, and if necessary, it is important to assume 
the number of selected pj, appropriate to the research results, as parameters. 

The analytical calculation of ergodic probabilities for a studied model is hindered by the P 
stochastic matrix determinant around zero (det P = 0.00406431 is similar to the numerical procedure 
error). This is the effect of similar values of some pij, which specify deterministic sections of the 
phase trajectory. Therefore, the P-I matrix is singular for numerical procedures, and it is not 
possible to calculate the pj limits of the equation (2).  

The rank of the P-I 5-degree matrix is 4, and the appropriate system of 6 equations with five 
unknowns can have exactly one solution. It was verified that the system satisfies the asymptotic 
solution found by the QSB and Mathematica programmes (Tab. 5), but without additional studies 
of this system, it cannot be stated that it is the only one. 
 

Tab. 5. pj ergodic probabilities and wj observation frequencies for S1-S5 states of the chain [source: own development]  

pj, wj S1 S2 S3 S4 S5 
pj Star 0.155082 0.17477 0.266537 0.179533 0.224078 
wj Star 0.198101 0.239358 0.203667 0.125082 0.233792 

 
The highest limit probability has the S3 maintenance state. It results from the necessity of 

implementation of daily services before departure and on return, and frequent refilling of operating  
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Tab. 6. Deviations [%] of wj frequencies from pj ergodic probabilities of S1-S5 states for the chain [source: own 
development]  

Dev.[%] S1 S2 S3 S4 S5 
Star 27.74 36.96 –23.59 –30.33 4.33 

 

fluids. The difference in frequency and ergodic probability is a measure of deviation of the objects’ 
sample during data collection from the asymptotic equilibrium of the studied process. The percentage 
deviation of the wj frequencies from the pj ergodic probabilities for the S1-S5 states is presented in 
Tab. 6. 

The highest deviation from the hypothetical equilibrium was noticed in the second state, which 
constitutes being at a standby. The reason may include frequent standstills of vehicles in the garage, 
while waiting for the task implementation, and low intensity of the operating process. The number 
of observations of this state is higher by approx. 20% more time, and in the entire considered 
period, the vehicles were waiting in the readiness state in relation to the implementation of tasks. 
The deviations of operating frequencies from limit probabilities in a set of states are satisfactorily 
low, which reflects the system proper operation. 
 
4. Markov model in continuous time 
 

In order to examine the Markov model in continuous time, the values of the λij elements of the 
Λ matrix of transition intensity were estimated (Tab. 7). The intensity of transitions λij ≥ 0 for i ≠ j 
is defined as a right-hand derivative of transition probabilities with respect to time.  
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The intensities λii ≤ 0 for i = j are defined as a complement of the sum of the transition 
intensities from the Si state for i ≠ j to 0: 
 λii + Σj λij = 0 , (4) 
hence: 
 λii = ‒Σj λij . (5) 

Modules |λii| = –λii are called the intensities of transitions from the Si state. They are not the 
intensities of return from the Si state to the Si state – as suggested in the notation. In case of the 
Markov homogeneous processes, the intensity of transitions is constant and equal to the inverse of 
the avtij average times of the object’s staying in the Si state before the Sj state:  
 λij

^ = 1 / avtij , (6) 

 avtij =(Σj tij) / trni , (7) 
where tij = (tk+1 – tk) only for lSk = Sj – time of the object’s staying in the Si state before the Sj state, 
which is equal to the value of the discrete and continuous variable for observation of the k number. 
avtij = (Σj tij) / trni – average time of staying in the Si state before the Sj state. 
 

Tab. 7. Values of the λij elements of the Λ matrix of the five-state operation model [source: own development] 

λij S1 S2 S3 S4 S5 
S1 –85.5929 16.74754 19.6508 32.0483 17.14629 
S2 0.238864 –1.07034 0.237331 0.38706 0.207083 
S3 13.95653 11.81818 –60.4897 22.61543 12.09957 
S4 12.32043 10.43276 12.24133 –45.6757 10.68116 
S5 0 0 0.226997 0.370207 –0.5972 
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The intensities of transitions are expressed in the number of transitions per hour for a single 
object. They should be interpreted for an hour of the initial state duration, not an hour of the process.  

4.1. Determination of ergodic probabilities of the Markov process 

The first stage in determining the limit probabilities for the Markov process is the formulation 
on the basis of the matrix of transition intensities of a system of linear equations. In case of 
continuous time, the equations in relation to the pj limit probabilities are solved:  

(∏T * Λ = 0) ∧ (Σj pj = 1 ). (8) 
∏T = [pj]T = [p1;; pns] is a transpose (row) vector of the pj limit probabilities of the Sj states of the 
number of j ∈ {1;; ns}. 

For the studied process, it is possible to obtain the following matrix equation: 

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 53 54 55

0
0
0
0
00 0

Tp
p
p
p
p

λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ

λ λ λ

−    
    −    
    ⋅ =−
    −    
    −    

. (9) 

Therefore, determination of the pj limit probabilities in continuous physical time requires the 
solution of the following system of equations:  

11 1 12 2 13 3 14 4 15 5

21 1 22 2 23 3 24 4 25 5

31 1 32 2 33 3 34 4 35 5

41 1 42 2 43 3 44 4 45 5

53 3 54 4 55 5

0
0
0
0

0

p p p p p
p p p p p
p p p p p
p p p p p
p p p

λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ

− + + + + =
 − + + + = + − + + =
 + + − + =

+ − = .  

(10) 

It is a homogeneous system, which has an infinite number of solutions, among which there 
may be the solutions to meet the standardisation condition:  

13

1
1j

j
p

=

=∑ . (11) 

The solution of the above system (10) with a restriction – standardisation condition – was found 
with the use of the WinQSB and Mathematica programmes, which differ in terms of numerical 
methods (Tab. 8).  

Tab. 8. pj limit probabilities of the operating system’s staying in the S1-S5 states in continuous physical time [source: 
own development] 

pj S1 S2 S3 S4 S5 
pj 0.004359 0.305616 0.008173 0.015099 0.666754 

pj [%] 0.435889 30.5616 0.817279 1.5099 66.6754 

According to this model, the majority of vehicles are in the limit state of the standstill in repair. 
It is consistent with the observed long times of waiting for spare parts, specialists and equipment, 
which are the cause of low performance of the maintenance and repair subsystem. About 30.5% of 
the car population is at a standby, and only 0.436% of cars are used. 

, 

, 

, 

, 
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Tab. 9. Limit probabilities of the system observation in the S1-S5 states for the chain and continuous time, as well as 
the measured observation frequencies of the S1-S5 states in time [source: own development] 

Operation system state of the Star cars pj [%] of the chain pj [%] in time wj [%] in time 
S1 – Usage 15.5082 0.4359 0.7351 
S2 – Standby 17.4770 30.5616 68.5704 
S3 – Maintenance 26.6537 0.8173 1.0083 
S4 – Repairs 17.9533 1.5099 0.7650 
S5 – Standstill in repair 22.4078 66.6754 28.9213 
 

Limit probabilities of the 5-state system in the field of time and for the chain are substantially 
different (Tab. 9). The causes result from different interpretations of the relation of frequency and 
process intensity (space of changes in the chain’s states is not physical time). In case of the chain, 
the frequently implemented S3 state has the highest probability, but it also has the average duration 
and low probability of observation in physical time. However, in the physical time, the S2 and S5 
states with large average times of their duration, and observation frequencies in time, have the 
highest probabilities. The long-term projection of the usage indicator (p1 = 0.436%), which shows 
the operational failure of a studied system, is very pessimistic.  
 
Tab. 10. Deviations of the observation frequencies of the S1-S5 states from limit probabilities in time [source: own 

development] 

Operation system state Deviation [%] of wj from pj pj [%] in time wj [%] in time 
S1 – Usage 68.6439 0.4359 0.7351 
S2 – Standby 124.3678 30.5616 68.5704 
S3 – Maintenance 23.3728 0.8173 1.0083 
S4 – Repairs –49.3344 1.5099 0.7650 
S5 – Standstill in repair –56.6237 66.6754 28.9213 
 

The deviation study of the observation frequencies of the S1-S5 states from limit probabilities in 
time (Tab. 10) showed that satisfactorily small deviations from limit probabilities are demonstrated 
by five states: S1, S3, S4 and S5. In addition, in case of the S2 state, the deviation of frequencies 
from the limit probability is not very high. 

Therefore, it concerns sufficient prognostic reliability of a studied model. 
 
4.2. Study of the dynamics of the 5-state system based on the system of Chapman-Kołomogorov-
-Smoluchowski equations  
 

The systems of the Chapman-Kołomogorov-Smoluchowski equations are studied and solved in 
order to determine the characteristic times of the object’s search for the stationary state after 
a specified set of initial states, e.g. times of determination of ergodic pj with an error of 1%.  

Systems of the Chapman-Kołomogorov-Smoluchowski equations have a matrix form: 

 (∏t
’ = d∏/dt = Λ * ∏) ∧ (Σj pj = 1) . (12) 

In case of the studied Markov process, they have the following form:  

 

1 111 12 13 14 15

2 221 22 23 24 25

3 331 32 33 34 35

4 441 42 43 44 45

5 553 54 55

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )0 0

p t p t
p t p t
p t p t
p t p t
p t p t

λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ
λ λ λ λ λ

λ λ λ

′−    
     ′−    

′    ⋅ =−
     ′−    
     ′−    

. (13) 
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The equivalent system of differential equations has the following form: 

1 12 2 13 3 14 4 15 5 21 2 31 3 41 4

2 21 1 23 3 24 4 25 5 12 1 32 3 42 4

3 31 1 32 2 34 4 35 5 13 1 23 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) (

p t p t p t p t p t p t p t p t
p t p t p t p t p t p t p t p t
p t p t p t p t p t p t p t

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ
λ λ λ λ λ λ

′ = − − − − + + +
′ = − − − − + + +
′ = − − − − + + 43 4 53 5

4 41 1 42 2 43 3 45 5 14 1 24 2 34 3 54 5

5 53 3 54 4 15 1 25 2 35 3 45 4

) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

p t p t
p t p t p t p t p t p t p t p t p t
p t p t p t p t p t p t p t

λ λ
λ λ λ λ λ λ λ λ
λ λ λ λ λ λ



 + +
 ′ = − − − − + + + +

′ = − − + + + + .

 (14) 

The attempt to solve the system of the Chapman-Kołomogorov-Smoluchowski equations with 
an operational method at restrictions for 0 ≤ p ≤ 1 probabilities with the use of the Mathematica 
programme failed, because this programme, with the use of with the NSolve function, finds the 
Laplace transforms, the originals of which have the values outside the range of 〈0; 1〉. 

According to the system of differential equations of 1 order, it is known that the existence and 
form of its solutions depend on eigenvalues of the matrices of intensity Λ [1]. Therefore, the time 
dependencies of solutions can be assessed on the basis of calculation of time constants and times 
of determination of the exponential solutions’ components, which were provided in Tab. 11.  
 
Tab. 11. Eigenvalues of the Λ intensity matrix and time constants of 2 system with the S1-S5 states [source: own 

development]  

No. Eigenvalue  
[1/h] 

Time constant  
[h] 

Time constant  
[min] 

Time constant  
[s] 

Settling time 99%  
[s] 

1 –96.6416 –0.010348 –0.620851 –37.251039 171.1685237 
2 –71.0114 –0.014082 –0.844935 –50.696085 232.9485125 
3 –24.8357 –0.040265 –2.415877 –144.952629 666.0573288 
4 –0.9372 –1.067043 –64.022604 –3841.356255 17651.03199 
5 1.966310E–06 5.0857E+05 3.0514E+07 1.8308E+09 not applicable 

 
The estimated Λ 5-state intensity matrix has five different ri actual eigenvalues, including four 

negative values and one positive value. The measurement unit of eigenvalues is an intensity unit of 
transitions – 1/h for the Λ estimated matrix. According to the theory of a system of linear differential 
equations of 1 order, the studied system of the Chapman-Kołomogorov-Smoluchowski equations 
has ∞ actual solutions constituting linear combinations of exponential functions with the exponents 
equal to the quotient of time and time constants τi = 1/ri. Negative time constants τi = 1/ri represent 
declining components, and in case of positive time constants – the increasing ones, of the linear 
combination with the Ai actual ratios equal to initial values of these components. The declining com-
ponents decrease, in relation to the module, to 1% of the initial value in time of t99% = 4.595*|τi|.  
In accordance with data on the system dynamics (Tab. 11), 4 declining components of the system 
of the Chapman-Kołomogorov-Smoluchowski equations are determined with an error of 1% in 
time from 171 s to 17651 s = 4.9 h, and the increasing component with the time constant 
1.831 E9 h = 1.831 giga hours = 209 thousand years will represent a residual linear trend of one 
component of solutions during the life of a studied operation system (several decades). According 
to the settling time values (Tab. 11), it can be found that the observation probabilities of the 
studied system’s states will quickly change in the time ranges from approx. 3 minutes to about 5 
hours from the initial values, but the increasing component of solutions can complicate the course 
of their search for limit values. The correct analytical solution of a system of the Chapman-
Kołomogorov-Smoluchowski equations with a restriction of the standardisation condition determined 
the Mathematica Markov Continuous module. It was assumed that in the initial time t = 0, the X(t) 
process is located in the S1 state. The obtained probabilities of observation of the S1-S5 states are 
complex functions (these are not the solutions by a classical method). In accordance with the 

, 

, 

, 

, 
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settling time values of the 5-state system is close to the equilibrium after 5 hours from forcing of 
the S1 initial state (usage) of the entire population. Dependency graphs of the time probabilities of 
observation of the S1-S5 states were provided in Fig. 3-7. 
 

 
Fig. 3. Evolution of the probability of the Star cars’ staying in the S1 state of usage in the time of 0.05 h = 180 seconds 

from forcing the S1 state for t = 0 [source: own development]  
 

 
Fig. 4. Evolution of the probability of the Star cars’ staying in the S2 state of being at a standby in the time of 5 hours 

from forcing the S1 state for t = 0 [source: own development]  
 

The probabilities of the S5 states (standstill in repair) and the S2 state (standby) about the highest 
limit values are determined at the slowest rate – Fig. 4 and 7. The probability of the S1 state (usage) 
within a few minutes – Fig. 3, and probabilities of the S3 (maintenance) and S4 (repairs) states are 
determined between ten and twenty minutes after forcing the S1 state – Fig. 5 and 6.  
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Fig. 5. Evolution of the probability of the Star cars’ staying in the S3 state of maintenance in the time of 0.2 h = 12 minutes 

from forcing the S1 state for t = 0 [source: own development]  
 

 
Fig. 6. Evolution of the probability of the Star cars’ staying in the S4 state of repair in the time of 0.2 h = 12 minutes 

from forcing the S1 state for t = 0 [source: own development] 
 

5. Conclusion 
 

The presented Markov models do not demonstrate high prognostic reliability and they can be 
applied only for general research in the qualitative and cognitive analyses. The responsible 
decisions in terms of the operation system optimisation cannot be taken on their basis, because 
they were formulated in accordance with the records of poor quality. Due to the small number of 
vehicles and low intensity of operation, the estimation errors of the parameters of models and 
projections were not small, but despite of this fact, the obtained results quite well described the 
functioning of military transport systems, at the same time, showing some of its deficiencies in the 
form of e.g.  
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Fig. 7. Evolution of the probability of the Star cars’ staying in the S5 state of the standstill in repair in the time of  

5 hours from forcing the S1 state for t = 0 [source: own development] 
 
long periods of the standstill in repair. The estimation of the applicably reliable Markov models 
would require collecting data on phase trajectories of more vehicles that are best equipped with on-
board time recorders of the task implementation, which guarantees the reliability of input data.  

However, the aim of this paper was to indicate a test method of the operating process with the 
use of the Markov models. The proposed method is universal and allows examining any uniform and 
modernised operation systems (with undifferentiated objects of the same type). They can constitute 
not only operation systems of vehicles but also of other technical objects, e.g. aircraft, if they are 
of one type and version in the stable external environment [5, 6]. The models of the Markov 
processes can be used only in case of operating processes without the effect of their history 
memory. 
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