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Abstract 

Nowadays multi-layered composite material is very often applied in different kind of structures, like aircrafts, 
boats or vehicles. Parts of structures, which are made of these materials, are significantly lighter in comparison with 
traditional materials, like aluminum or steel alloys. On the other hand, the process of damage creation and evolution 
in the case of composites is much more complex. Moreover, the damages, which are characteristic for multi-layered 
materials (matrix cracking, fibre breakage, delaminations), are very difficult to detect at early stage of creation. 
Hence, there is a need to develop the advanced methods to detect them without destroying tested composite element. 
One of them is based on analysis of elastic wave propagation through the composite structure. Unfortunately, elastic 
waves possess strongly dispersive character. Thus, it is necessary to determine dispersion curves for investigated 
material before the tests in order to appropriate interpretation of received dynamic response of structure. In the case 
of arbitrary composite materials, it is rather challenging task. In the present article the relatively new, analytical 
method is applied, namely stiffness matrix method. The fundamental assumptions and the theoretical formulation of 
this method are discussed. Next numerical examples are presented, namely the dispersion curves are determined for 
the single orthotropic lamina and multi-layered 'quasi - isotropic' composite plate. The studied plates are made of 
glass fibres and epoxy resin. In the case of single lamina, the dispersion curves are determined in the parallel, 
perpendicular and arbitrary direction of waves propagation with respect to the fibre direction. In the case of multi-
layered plates, the dispersion curves are computed for one arbitrary direction. Additionally, the phase and group 
velocities for fundamental modes and fixed excitation frequency are estimated in all directions of waves propagation. 
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1. Introduction

Presently, the majority of engineering structures are made of traditional isotropic materials, 
like, for example, steel or aluminium alloys. However, these materials are very often replaced by 
multi-layered composite materials. In the case of composites, the process of damage formation is 
very complex (matrix cracking, fibre breakage, delaminations). It should be stressed here that most 
of flaws are not visible in direct observation, especially at the early stage of formation. Thus, they 
have to be detected with the use of advanced method without destruction of studied structures or 
elements. Generally, these methods are known in literature as non-destructive testing. Among 
different possibilities, it seems that the use of guided waves propagation is very promising, mainly 
due to the fact that these waves can travel through the structures for long distances [1]. However, 
the elastic waves are strongly dispersive and they have a multimodal character. It causes that the 
damage detection based on an analysis of dynamic response of interrogated structure is rather 
difficult. Therefore, determination of dispersion curves is one of the most important aspect of all 
systems for damage detecting especially in the case of composite materials. Generally, in the case 
of multi-layered materials determination of the dispersion curves is rather a difficult task. There 
are available three different method. The first of them, known as the transfer matrix method, was 
proposed by Thompson [13] in 1950 and next corrected by Haskell [2] in 1953. Initially this 
approach was adopted for the composites where all layers have isotropic mechanical properties. 
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Next, Nayfeh [9, 3] extended this approach to the case of arbitrary composite materials. This 
approach is relatively simple and easy to use. However, the transfer matrix method is numerically 
unstable for relatively large product of frequency and thickness of composite wall. It is well 
known as fd problem, Lowe [7]. An alternative to this is the global matrix method approach 
proposed by Knopoff [6] in 1964. This method is used in the case of anisotropic composite 
materials by Pant et al. [10] .Unfortunately; it seems that in this method the problem of numerical 
instabilities is also present Lowe [7]. Moreover, in this method, the dynamic properties of 
a composite are described by a single matrix, which size strictly depends on number of layers. 
Thus in the case of composites, where the number of layers is large, the computations could be 
very time consuming. In order to avoid numerical instabilities, which are main disadvantage of the 
mentioned above methods, Kausel [5] in 1986 and further Wang and Rokhlin [14, 11, 12] in 2001 
proposed the stiffness matrix method. The main idea of this relatively new approach is to remove 
the exponential terms from the diagonal of the matrix, which describes the dynamical properties of 
structure. The numerically unstable transfer matrix is replaced by the stiffness matrix, which 
relates the components of stress at the bottom and top of the layer with the displacement at the 
bottom and top layer. The stiffness matrix for the whole composite is obtained with the use of 
advanced recursive algorithm. It should be stressed here that this method is unconditionally stable 
and only slight less efficient in comparison with transfer matrix method. This method is also used 
by Kamal and Giurgiutiu [4] in the case of arbitrary multi-layered composites. 

In this present article, the stiffness matrix method is used to obtain the dispersion curves for the 
composite, which is made of glass fibres GFRP E-glass and epoxy resin [8]. The calculations 
are carried out for a single orthotropic lamina as well as a multi-layered composite material with 
the following ply orientations [0°, 90°, 45°, –45°, –45°, 45°, 90°, and 0°]. 

 
2. Stiffness Matrix Method  

 
Generally, it is assumed that the elastic waves propagate in the direction, which is parallel to 

the x1-x3 plane of the global Cartesian coordinate system. The wave solution describing 
displacement components ui can be written as follows [1]: 
 ( ) ( ) ( )ctxxieUUUuuu −+= 31

321321 ,,,, αξ . (1) 

In the above expressions Ui are the unknown displacement amplitudes of partial waves, i²=–1 
is the imaginary unit, ξ=ω/c denotes the wave number, c is the phase velocity, ω is the circular 
frequency ω=2πf and t is time. Here it should be stressed that according to Snell's law, all partial 
waves have the same frequency f. The parameter α will be determined later. For the k-th layer the 
expression, which relates the stress at the bottom and top layer with the displacement at the top 
and bottom layer, can be written in the following form, namely: 
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where subscript 'k-1' means the top surface of the k-th layer and subscript k means the bottom 
surface of the k-th layer. Further, {σ}, {u} denotes the stress and displacement, respectively. The 
matrixes [A]k and [B]k takes the form [4]: 
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where dk denotes the thickness of the layer. The elements of matrix [A]k and [B]k are described by 
the following relationships, namely: 
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where Cij are the components of the stiffness matrix, which describes the mechanical properties 
of the layer after transformation from the layer to the global coordinate system. The amplitudes of 
partial waves Uij can be determined from the following system of linear equations: 

 ( )[ ]{ } 0=UK α , (7) 

where: 
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The symbol ρ in (8) denotes the density of the layer material. In order to obtain non-trivial 
solution of (7), the determinant of the coefficient matrix (8) has to be equal to zero. To fulfil this 
condition the following 6-th order polynomial equation with respect to the scalar parameter α is 
obtained, namely: 

 .0246 =+++ DCBA ααα  (9) 

There are six real or complex roots of this equation, namely α1 = –α2, α3 = –α4 and α5 = –α6. In 
order to obtain the stiffness matrix for the completely composite material, an advanced recursive 
algorithm has to be applied [11]. Let us consider two adjoining layers (1, 2), namely: 
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where subscripts denote the interfaces. By excluding {σ}1 and {u}1 from the first relation and 
substituting in the second one, the matrix, which relates {σ}0 {u}0 to {σ}2 {u}2, is obtained. This 
combined matrix is a stiffness matrix for these two bonded layers: 
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Denoting the stiffness matrix obtained by [K]A and the stiffness matrix for the third layer by 
[K]B, we can recursively apply the relation (11) to obtain the global stiffness matrix, which relates 
the stresses to the displacement for the top and bottom surface of the whole composite plate. The 
wave characteristic equation for the completely composite structure is obtained from the total 
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stiffness matrix. Assuming that the components of stress on the top and bottom surface are equal 
to zero, the Lamb wave dispersion equation is: 

 [ ]( ) .0det =K  (12) 

In other words, for the assumed value of frequency ω the value of phase velocity c is looked 
for. According to the authors’ experience, it seems that in order to find the roots of (12), the 
bisection method is the most suitable. 

 
3. Dispersion curves 

 
The dispersion curves are determined for the single lamina as well as for the composite, which 

consists of 8 layers with following ply orientation [0°, 90°, 45°, –45°, –45°, 45°, 90°, 0°]. The total 
thickness of plates are tc=2 mm in both cases. In the case of multi-layered plate all layers have 
identical thickness tl=0.25 mm. The studied structures are made of identical material, namely glass 
fibres GFRP E-glass and epoxy resin [8]. The mechanical properties of layer material are as 
follows: E1=38.6 GPa, E2=8.27 GPa, G12=7.17 GPa, ν12=28 and density ρ=1.8 g/cm³. The 
dispersion curves are determined in the following frequency range 25 kHz ≤ f ≤ 2000 kHz and 
phase velocity range 0 ≤ c ≤ 6 km/s. All necessary numerical calculation is carried out with the use 
of SCILAB free software.  

 
Single lamina 

In the Fig. 1 there are depicted the dispersion curves, which are obtained for the single lamina. 
It is assumed that the elastic waves travel in the direction, which is parallel to the axis x1 of the 
principal orthotropic direction (φ=0°). As it can be observed, the fundamental mode SV0 in the 
case of low frequencies (f < 400 kHz) is strongly dispersive. However, for the higher frequencies 
its phase velocity is almost constant and is equal to about c≈1.47 km/s. The phase velocity of the 
shear horizontal mode SH0 is constant in the studied range of frequencies. Its value is equal to 
c=152 km/s. The phase velocity of the symmetric mode P0 for the low frequencies (f < 520 kHz) 
varies not significantly and its value c≈4.66 km/s. Next, its value suddenly decreases and finally is 
equal to c≈1.49 km/s. In the studied range of frequency, there are also 6 higher modes. 

 

 
Fig. 1. Dispersion curves (phase and group velocities) for single glass/epoxy resin lamina. Total thickness of layer 

tc=2 mm. Waves propagation angle φ =0° 
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Fig. 2. Dispersion curves (phase and group velocities) for single glass/epoxy resin lamina. Total thickness of layer 

tc=2 mm. Waves propagation angle φ =90° 
 

The dispersion curves, which are obtained in the case, when the elastic waves propagate in the 
direction perpendicular to the fibres, are shown in the Fig. 2. Qualitative character of the presented 
curves is similar. However, the phase velocity of the P0 and SV0 for the higher frequencies is 
slightly reduced and now it is equal to c≈1.22 km/s. The initial phase velocity of the P0 mode is 
significantly reduced to the value c≈2.16 km/s. It is worth noted that the phase velocity of the SH0 
mode is still constant (c=1.52 km/s). However, the number of higher modes increases and now the 
8 modes are visible in the investigated range of frequency. However, in the case of the waves 
propagation angle (here φ=35°, Fig. 3) the obtained dispersion curves are quite different. The main 
difference is that the phase velocity of the SH0 mode is not constant. Moreover, the number of 
higher modes is also different and now it is equal to 11. Moreover, in the Fig. 4 there are shown 
the phase and group velocities of the fundamental modes SV0, SH0 and P0 with respect to the 
waves propagation angle. These graphs are prepared for the fixed frequency, where f = 250 kHz. It 
should be stressed that the phase as well as the group velocities of all fundamental modes strongly 
depends on the propagation direction, which is described by the angle φ. 
 

 
Fig. 3. Dispersion curves (phase and group velocities) for single glass/epoxy resin lamina. Total thickness of layer 

tc=2 mm. Waves propagation angle φ =35° 
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Fig. 4. Phase and group velocities with respect to waves angle propagation φ for single glass/epoxy resin lamina. 

Total thickness of layer tc=2 mm. Fixed frequency f = 250 kHz 
 
Composite [0°, 90°, 45°, –45°, –45°, 45°, 90°, 0°] 

In the Fig. 5 there are depicted the dispersion curves, which are computed for the 'quasi-
isotropic' multi-layered composite material. As before, the fundamental mode SV0 for the higher 
frequencies is almost not dispersive. Its phase velocity is equal to about c≈1.39 km/s. The phase 
velocity of the shear horizontal SH0 mode varies also significantly. The initial phase velocity of 
the SH0 mode is equal to c=2.04 km/s. For the higher frequencies, this value is convergent to the 
phase velocity of the SV0 mode. The fundamental mode P0 behaves in the similar way as before. 
Initially its phase velocity is equal to c=3.37 km/s. However, in the case of higher frequencies the 
phase velocity is slightly greater (c≈1.56 km/s) in comparison with the phase velocities of the SV0 
and SH0 modes. The relationship between the phase and group velocities of the fundamental 
modes and the waves propagation angle φ are presented in the Fig. 6. As before, these graphs are 
prepared for the frequency f=250 kHz. It should be stressed here that, as it is expected, the 
completely studied composite material has 'quasi-isotropic' mechanical properties. Thus, the phase 
and group velocities are almost insensitive of the angle φ. Moreover, the determined values of 
phase and group velocity are very similar.  
 

 
Fig. 5. Dispersion curves (phase and group velocities) for composite [0°, 90°, 45°, -45°, -45°, 45°, 90°, 0°]. Total 

thickness of composite tc=2 mm. Waves propagation angle φ =0° 
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Fig. 6. Phase and group velocities with respect to waves angle propagation φ for composite [0°, 90°, 45°, -45°, -45°, 

45°, 90°, 0°]. Total thickness of layer tc=2 mm. Fixed frequency f = 250 kHz 
 
4. Conclusions 

 
It should be stressed here that the applied here stiffness matrix method is an effective tool for 

determining dispersion curves for any arbitrary multi-layered composite materials. It is relatively 
simple and easy to use in comparison with, for example, global matrix method. Generally, the 
shape and the number of elastic wave modes, which are present in the investigated range of 
frequency and phase velocity, strictly depends on the mechanical properties of the whole 
composite structure as well as on the waves propagation angle φ. For the angle φ different from 0° 
and 90°, the number of higher modes is the largest. Qualitatively, the behaviour of the fundamental 
modes is similar in all investigated cases. For the low frequency, the highest phase and group 
velocity has always the symmetric mode P0. 
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