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Abstract 

Extensive literature indicates that the effect of strengthening materials is related to their structural construction. 
The structure of the metallic material exhibits the greatest strengthening effect when there is a very limited movement 
of dislocations and their movement is completely blocked due to numerous obstacles [1, 3, 6-9, 12, 15, 16]. 

In this paper strain, rate and temperature dependences of yield strength of metallic materials are presented. The 
effect of temperature and strain rate on the value mechanical threshold stress is determined. 

In addition, the effect of temperature on the Kirchhoff modulus and Burgers vector is determined. The interaction 
of dislocations with grain boundaries causes additional stress – athermal stress causing the strengthening of the 
structure. The term “athermal” implies that thermal activation is unable to assist the dislocation past these obstacles. 

The strengthening of metallic materials is related to the dimensions of the grains, which influence the athermic 
stress. 

The calculations of mechanical threshold stress and other parameters of the structure of the material allow for 
easier understanding of the strengthening of the material loaded with temperature and strain rate. The largest 
strengthening occurs in pure metals and their alloys in the case of the total blocking of dislocation motion. This 
process takes place when the temperature is 0 K or at very high strain rates. 

The metal demonstrates the greatest effort, which is called mechanical threshold stress (MTS) [5]. 
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1. The influence of temperature and strain rate on the selected properties of metallic
materials according to dislocation theory

The dependence describing mechanical threshold stress σ̂  is the constitutive model, which
relates to internal state changes σ̂ depending on the temperature and strain rate [5] 

σ
ε
εσ ˆln1 0















−=




G
kT . (1) 

The equation (1) is a dependence of the plasticizing stress (yield strength) from the 
temperature, strain rate and MTS σ̂ . State variables of the above model can be written as 

,ˆ),,( σεσ Ts = (2) 
where: 
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Figure 1 shows two stacked planes that correspond to the hexagonal close-packed (HCP) as the 
densest packing of hexagonal structure and the face-cantered cubic (FCC). Such a close-packed 
structure does not correspond to the body-cantered cubic (BCC). 

It is only possible to apply a force to each row of atoms on the top plane and slide them over 
the bottom plane. Such method of generating “permanent” strain would create a movement of 
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material in the top plane in relation to the bottom plane [5]. Fig. 2 presents the side view of planes 
position; there is an impression of a single row movement, instead of whole plane.  
 

 
Fig. 1. Two close-packed planes with one sliding over the other [5] 

 

 
Fig. 2. A side view of the configuration shown in Fig. 1 [5] 

 
On the basis of Fig. 2, the shear stress τ  will be 0 when 0=u  equilibrium position) and 

when 2/bu =  (right-hand side). The stress to impose the elastic motion is related to the strain 
through [5]: 

 ,
d
uµµλτ ==  (4) 

where:  
−µ shear modulus,  
−λ shear strain. 
This equation (4) allows motion of the top plane relative to the bottom plane description. 

According to dislocation theory, the stress in the metallic material structure is a result of the 
interaction of a dislocation with a variety of obstacles. In all cases, the stress value is proportional 
to the shear modulus. Dislocation theory predicts that the stress to bend a dislocation to a radius 

dR  is [5, 10]: 

 
dR
b

⋅
⋅

≈
2
µτ , (5) 

where:  
−µ shear modulus,  
−b burgers vector,  
−dR radius of a dislocation loop [10]. 
In reality, there is no clear screw dislocation or edge dislocation, but meets dislocation loops. 

Part of the loop is a screw, and a part of the edge, but the greater part is mixed edge and screw. 
Studies have shown that the yield strength, shear modulus and Burgers vector are function of 
temperature. However, values Burgers vector and of the shear modulus values depend on 
temperature in small extent while the yield stress is strongly dependent on the temperature. To take 
into account such dependencies the Equation (1) can be rewritten as: 
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where: −µ shear modulus at T temperature, −0µ  shear modulus 0 K temperature: 
 .00 KT== µµ  (7) 

200



 
The Influence of Temperature and Strain Rate on the Strengthening of Metallic Materials 

In polycrystalas, the strength addition due to interaction of dislocation with grain boundaries, it 
is expressed in the form athermal stress, aσ . The term “athermal” implies that thermal activation 
is unable to assist the dislocation past these obstacles. 

This is evidenced by the martensite transformation in iron alloys: austenite (FCC – face – 
cantered cubic structure) → supersaturated with coal the ferrite (BCC – body cantered cubic 
structure). The driving force of the transformation is the difference of free energies of austenite 
and martensite. 

The dependence between the yield point and stress along the slip plane of the grain boundaries, 
the grain size and the athermal stress is described by Hall – Petch equation [5]: 

 
gs
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i d

k
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where: 
−gsd grain dimension, 

expression 2/1−⋅ gsd dk  – the grain size and is called the athermal stress aσ , 
−dk proportionality constant in the Hall-Petch equation, 
−iσ stress (e.g. related to CRSSτ  – critical resolved shear stress in a pure metal) in a material with 

a very low dislocation density. 
 

Normal to slip plane: [ ]111  

 
Slip direction [ ]111  

Fig. 3. Slip planes and directions for a single crystal with a slip plane at an angle φ and a slip direction at an angle λ 
to the stress axis [5] 

 
Figure 3 shows a scheme stretching the specimen. Two angles have been defined, a first (φ) 

between the load axle (F) and perpendicular to the slip plane (N) and a second (λ) between the 
load direction (F) and load constituent to the sliding direction (F1). 

A slide starts sequentially under the planes and the directions in which the tangential 
component of the stress at the earliest reaches a critical size ( CRSSτ ). The value of the tangential 
stress caused by the external load depends on the slip plane and direction. Stress cutting at the slip 
is the quotient of a force in the slip direction by the skid surface: 

 .
)111(

1
]101[

A
F

=τ  (9) 

The stress τ is called the critical resolved shear stress CRSSτ . With regard to the sample 
surface A: 

 .
cos)111( φ

AA =  (10) 

The value of the force in the slip direction: 

 .cos]101[ λFF =  (11) 
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Hence: 
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Factor ]cos[cos λϕ is defined as a Schmidt factor, its value is less or equal to unity and the 
stress σ  is tensile stress [4]. The critical resolved tensile stress crσ  is equivalent of the yield 
strength at tensile [2]. 

Equation (1) after taking into account stress aσ  is presented below: 

 σεσσ ˆ),( Tsa += . (13) 

Athermic stress aσ  is equivalent to the expression: gsd dk / . Equation (6) after taking into 
account athermal stress: 
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Between the activation energy G and the shear modulus, there is a simple relationship: 

3bG ⋅= µ . Equation (14) including the mentioned dependency is presented below: 
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where 0g  – normalized activation energy. 

The benefit of this normalization is that 0g  values become dimensionless and closer to unity 
[5]. After transforming the equation (15) the following dependency can be obtain: 
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2. Determination of the mechanical threshold stress and the yield stress 

 
Samples of molybdenum have been tensiled with different strain rate and at different 

temperatures. For each strain rate and for each temperature the stress values were determined. On 
the basis of the work (Table E6.3 [5]) were presented research results in Tab. 1. Burgers vector 
length for molybdenum is nm0.26 . The shear modulus is a function of the temperature, the 
athermic stress is equal MPa100=aσ  while 18

0 s10 −=ε . 
The objective is to determine the value of the mechanical threshold stress σ̂  and the factor of 

normalized activation energy 0g . 
To determine the value σ̂  and 0g  the equation (15) was used. Data are MPa,100=aσ  

J/K1038.1,nm26,0,s10 2318
0

−− ⋅=== kbε and on the basis of Tab. 1 eRT ,, ε . Shear modulus 
)(Tµ  on a function of temperature was determined on the basis to the Varshi equation [5, 18]: 
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Tab. 1. Results of measuring the yield strength of molybdenum depending on temperature and strain rate [5] 

Temperature, K Strain rate, s-1 Yield strength, MPa 
200 
300 
400 
500 
200 
300 
400 
500 
200 
300 
400 
500 

0.001 
0.001 
0.001 
0.001 
1.0 
1.0 
1.0 
1.0 

2000 
2000 
2000 
2000 

1124 
998 
897 
799 

1156 
1090 
1002 
934 

1203 
1167 
1125 
1065 

For molybdenum, it was assumed (on the literature basis) [5]: 
.K252,GPa475.6,GPa7.142 000 === TDµ  

Based on data presented in the Tab. 1: 
K2001 =T , K3002 =T , K4003 =T , K5004 =T , 13

1 s10 −−=ε , 1
2 s0,1 −=ε , 1

3 s102 −⋅=ε , 
shear modulus values were determined using the dependence (17): 

GPa7.142)0( =≅µ , GPa1.140)200( =µ , GPa8.137)300( =µ , GPa3.135)400( =µ , 
GPa8.132)500( =µ . 

Fig. 4. The change the shear modulus value as a function of temperature for the molybdenum 

Figure 4 shows the change of the shear modulus value depending the temperature for 
the molybdenum. Change of the shear modulus µ  value dependent on the temperature for the 
molybdenum (Fig. 4) is small. 

The mechanical threshold stress of molybdenum has been defined by the transformation of the 
equation (16): 
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for the calculations, it was assumed: 
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When comparing dependence a) and b) the following results were obtained: 
2.00 =g  and GPa1860ˆ =σ . 

The equation (1) as a general form for equitation (15) that is describing the variation of yield 
stress depending on its temperature and strain rate. 

It should be noted that this expression represents the shape of the obstacle profile and the form 
of the equation (15) represents a highly idealized profile. A further modification to equation (1) is 
to introduce parameters that more accurately represent “curvature” of the obstacle profile through 
the exponents p and q put into equation (18) [5, 11]: 
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on the other hand: 
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where 10 ≤< p  and 21 ≤< q . Equation (18) and (19) represent the form of the “yield stress” 
equation that will be used in MTS formulations going forth – replacing the simplified Equation 
(1). In the form of Equation (13): 

 
0

ˆ
),(
µ
σε

µ
σ

µ
σ Tsa += , (20) 

where: 

 
pq

bg
kTTs

/1/1
0

3
0

ln1),(





























−=
ε
ε

µ
ε




 .  (21) 

The values of the coefficients p and q have been set 2/3,2/1 == qp  [5]. 
Equation (18) can be written as: 
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Equation (22) can be written after taking into account the values given in the task: 
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Fig. 5. The dependence between the yield stress of molybdenum and the temperature with strain rate on the basis 
of the Tab. 1 and dependence (23) 

Figure 5 shows the dependency between the yield stress of molybdenum change and the strain 
rate with the temperature taking into account the activation stress and other parameters. 

3. Summary and conclusions

Example molybdenum samples which have been exposed to stretching depending on the 
temperature and strain rate showed a significant change of the strength parameters. It should be 
noted that values of the modulus of elasticity has not changed significantly along with the 
temperature change. Based on the dislocation theory, an additional increase strength of the 
material due to interaction of dislocations with grain boundaries occurs. 

The resulting stress is an athermal stress. A wealth of experimental data is available on yield 
stress as a function of test temperature and strain rate. 

On the basis of equation (1) which determines the dependence of yield stress from the 
temperature and strain rate there was, determined detailed form of the equation (19).Equation (19) 
includes not only mechanical parameters but also the structural ones. 

Therefore, it is possible to describe the yield stress from the temperature, strain rate and 
mechanical threshold stress very precisely. Introducing the concept of mechanical threshold stress 
(MTS) allows following the variables of the state and determining the current value of the material 
effort. 

The obtained results, are allowing the prediction even for the stresses that were not described, 
because of being outside the measurement scope, which makes them significant. 

Evolution of the threshold stress characterizing the stored dislocation density was described 
using a phenomenological physics basis. 

Three internal state variable have been used to have a deeper understanding of the operative 
deformation mechanisms (and the obstacle populations opposing dislocation motion). 
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