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Abstract 

This paper presents theoretical model dedicated to a guided bomb. A mathematical description of the six-degrees-
of-freedom motion of the bomb is shown. Particular attention was paid on aerodynamic forces and moments 
generated by additional control fins mounted on the front part of the bomb. Exemplary results of a numerical 
simulation of bombing are submitted and conclusions focused on the possibility of flightpath control are formulated.  
The paper concerns on the equations of bomb spatial motion and kinematic relations expressed making use of moving 
coordinate systems, the common origin of which is located at the centre of mass of the bomb. The set of equations of 
the rotating motion about the centre of mass in the body-fixed reference frame is presented. Aerodynamic forces and 
moments acting on the bomb are described. Coefficients are determined using the PRODAS software with detailed 
geometry of the LB-10M bomb. The coefficients were determined for different Mach numbers from 0.4 to 0.8. The 
important task was research investigations of aerodynamic characteristics with a wind tunnel and a set of experiments 
in real bombing conditions. 
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1. Introduction

A classical bomb is a kind of passive unguided airborne munitions, which has limited accuracy 
of hitting a target, particularly in real atmosphere conditions [1]. Therefore, to improve a degree of 
accuracy and to obtain possibility of active bomb control during a flight, theoretical and 
experimental research works are performed at the Air Force Institute of Technology [2]. They are 
dedicated to small LB-10M bomb, which was designed by AFIT research team in 2008. The 
weight of the bomb is 13 kg, and its length is equal to 0.645 m, a diameter of 0.11 m. This bomb is 
dedicated to training of precise bombing for Polish Air Forces. It is used at following planes: 
MiG-29, Su-22, TS-11 (Fig.1). 

For this reason some modifications have been done. The LB-10M bomb, which originally has 
only four stabilizers F1 was equipped by additional four fins F2 (Fig.3). They allow you to active 
control of bomb trajectory with autonomous control system mounted on-board. The executive part 
of this system is composed of four fins mounted on the front part of the bomb. They are divided 
into two pair  each pair is controlled independently by changing of angle of attack (AoA). These 
fins produce aerodynamic forces and moments influencing on bomb motion.  

Aerodynamic characteristics of the bomb have been determined using commercial software 
PRODAS [3]. Originally, PRODAS is dedicated to projectiles and missiles and is based on lot 
theoretical and experimental investigations [4]. Therefore, it allows only changing AoA of 
opposite fins in opposite directions, to produce rolling motion. While in the case of the LB-10M 
bomb the same deflection for each pair of fins is required. This problem was resolved comparing 
some aerodynamic derivatives calculated by PRODAS. It will be shortly described below. 

The mathematical model of the bomb flight is based on Newton’s laws [5-9]. It allows 
simulating spatial motion. Series of simulations with various fins' angles of attack allow to 
determine range of the guided bomb LB-10M. 
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Fig. 1. LB-10M bomb mounted on TS-11 plane 

 
2. Equations of the problem 
 

The equations of bomb spatial motion and kinematic relations are expressed making use of 
moving coordinate systems, the common origin of which is located at the centre of mass of the 
bomb (Fig. 2). 

We shall apply a Earth-fixed system of coordinates Oxgygzg, the Ozg axis of which is vertical 
and directed downwards, a system of coordinates Oxyz attached to the bomb (body axes), where 
the Oxz and Oxy planes coincides with the symmetry plane of the bomb, and a system Oxayaza 
attached to the air trajectory (velocity axes), in which the Oxa axis is directed along the flight 
velocity vector aerV  and the Oza axis lies in the Oxz plane of the bomb.  

 

  
Fig. 2. Coordinate systems 
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The relative position of the Earth-fixed system Oxgygzg and the body system Oxyz, attached to 
the aircraft is described by Euler angles: Ψ – the yaw angle, Θ – the pitch angle, Φ – the roll 
angle, while the relative position of the system Oxyz and the system Oxayaza attached to the air 
trajectory – by the angle of attack α and the angle of sideslip β. Relations are as follows: 
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where matrices have the forms: 
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The equations of motion of the mass centre have the following form in the Oxyz system: 
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where: m – the mass of the bomb, [ , , ]T
aerV U V W=  – the velocity vector, [ , , ]TP Q RΩ =  – the 

vector of angular velocity, [ , , ]TF X Y Z=  – the resultant vector of forces, which is the sum of the 
weight and an aerodynamic force. Its component is determined by formulas:  
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where:  
Cx, CNδ, CNq – coefficients of aerodynamic axial and normal forces, 
S – cross-sectional area of the bomb, 
ρ – air density, 

 2 2 2
aerV U V W= + + . (6) 

The set of equations of the rotating motion about the centre of mass in the body-fixed reference 
frame is:  
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where Ix, Iy, Iz are the inertia moments and [ , , ]TM L M N=  is the resultant aerodynamic roll, pitch 
and yaw moments of forces defined as follows: 
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where Clp, Cmδ, Cmq, Cnδ, Cnq – coefficients of aerodynamic moments, d – diameter of the bomb. 
Because of bomb symmetry, one has Cnδ  = Cmδ, Cnq = Cmq. 

The equations of motion (4) and (7) should be completed by the following kinematic relations, 
which enable us to determine the angular position of the bomb with reference to the Oxgygzg 
coordinate system: 
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and the relations for determining the position of the centre of mass in the Earth-fixed coordinate: 
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3. Aerodynamic coefficients 
 

Aerodynamic forces and moments acting on the bomb were calculated using formulas (5) and 
(8). All coefficients were determined using commercial software PRODAS. For this reason, 
detailed geometry of the LB-10M bomb was implemented into the software (Fig. 3). As the result, 
courses of aerodynamic coefficients were obtained. They are shown in Fig. 4-7 as the function of 
Mach number for the bomb without fins F2 and with deflected fins. Angles of deflections were: 0°, 
5°, 10°. Deflections were asymmetric.  
 

 
Fig. 3. Geometry of the LB-10M bomb 
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Fig. 4. Axial force coefficient Cx = Cx0 + Cx2δ 2 
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Fig. 5. Normal force coefficients 
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Fig. 6. Roll damping moment coefficients Clp ≈ Clp_F1 + Clp_F2 
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Fig. 7. Pitching moment coefficients 

 
PRODAS calculates coefficients for the case of fins deflected in opposite directions (e.g. left 

fin – up and right fin – down). Therefore, it was necessary to try to recalculate obtained coefficient 
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for the case of symmetric deflection of both fins. The main goal was to forces and moments, which 
determines reaction of the bomb to control. For this reason, some detailed characteristics generated 
by PRODAS were compared and discussed: 
– for the whole bomb: 

d /dm mC Cδ δ=  – a derivative of pitching moment coefficient with respect to the angle 
of nutation, 

d /dq
m mC C q=  – a derivative of pitching moment coefficient with respect to the dimensionless 

angular velocity q , where 0.5 / ,q qd V=  
– participation of stabilizers F1 and fins F2: 

_ 2 _ 2d /dN F N FC Cδ δ=  – a derivative of coefficient of normal force produced by F2  
with respect to the angle of nutation; 

2 2 /F FL L d=  – the distance from the bomb nose to fins F2 centre  
of pressure measured in calibres; 

_ 2_ 2 d /dp
l Fl FC C p=  – a derivative of rolling moment coefficient produced by F2  

with respect to the dimensionless angular velocity p .  
Two variants of calculation were performed: 
A – bomb with rear stabilizers F1 and without F2 fins, 
B – bomb with rear stabilizers F1 and with F2 fins: 

B0 – for deflection of F2: δF2 = 0°,  
B5 – for deflection of F2: δF2 = 5°, 
B10 – for deflection of F2: δF2 = 10°. 

 
3.1. Analysis of the pitching moment 
 
Derivative δ

2_ FmC  
The pitching moment produced by deflection of one pair of fins, F2 is equal to: 

 
2

2 _ 2 2
aer

F m F
VM C S dρ

= . (11) 

It can also be calculated on the basis of the value of the force NF2 generated by one pair of F2 
fins: 

 
2

2 2 2 2 _ 2 2
aer

F F F F N F
VM l N l C Sρ

= ⋅ = ⋅ , (12) 

where lF2 determines the distance between the pressure centre of fins F2 and the centre of mass.  
lF2 is measured along the longitudinal axis: 

 2 2 2F CG F CG Fl L L L L d= − = − . (13) 

Comparison of formulas (11) and (12) give you: 

 _ 2 _ 2 2m F N F FC d C l= . (14) 

Differentiating both sides of (14) with respect to the nutation angle, we have: 

 2
_ 2 _ 2

F
m F N F

lC C
d

δ δ= . (15) 

This derivative can be also calculated based on data from PRODAS: 

 _ 2 _ _m F m B m AC C Cδ δ δ= − . (16) 

110



 
Evaluation of the Possibility of Bomb Flight Control 

 

Minuend on the right side corresponds to the variant B of calculations and it is the same for sub-
options B0, B5 and B10. Subtrahend corresponds to the variant A. Comparison of calculations 
obtained by using equations (15) and (16) allows to check the correctness of the derivative δ

2_ FNC  
generated by PRODAS. Tab. 1 shows various coefficients determined for different Mach numbers. 
The table shows that calculated by two ways values of the derivative _ 2m FCδ  are close each other. 

 
Tab. 1. Various coefficients determined for different Mach numbers 

Ma 
δ

2_ FNC  
2FL  δ

BmC _  δ
AmC _  δ

2_ FmC  

PRODAS PRODAS PRODAS PRODAS formula (16) formula (15) 
0.4 0.6947 1.8569 –1.31 –2.06 0.75 0.76 
0.6 0.7826 1.8609 –1.34 –2.19 0.85 0.856 
0.7 0.8313 1.8646 –1.33 –2.22 0.89 0.91 

0.75 0.8557 1.8665 –1.32 –2.24 0.92 0.925 
0.8 0.88 1.8684 –1.31 –2.26 0.95 0.9513 

 
Derivative q

FmC 2_  
Similar calculations were performed for the pitching moment coefficient derivative with 

respect to q . Differentiating formula (14), we have: 
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Because PRODAS does not give the derivative q
FNC 2_ , it was calculated indirectly: 
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Hence, we get: 

 
2

2
2_2_ 2 






=

d
lCC F

FN
q

Fm
δ . (19) 

q
FmC 2_  derivative can also be calculated on the basis of the PRODAS data: 

 q
Am

q
Bm

q
Fm CCC __2_ −= . (20) 

Comparison of calculations obtained by using equations (19) and (20) allows checking the 
correctness of the derivative δ

2_ FNC  generated by PRODAS. Tab. 2 shows various coefficients 
determined for different Mach numbers. The table shows that calculated by two ways values of the 
derivative q

FmC 2_  are close each other.  
 
3.2. Analysis of the rolling moment 
 
Derivative p

FlC 2_  
The damping rolling moment produced by four fins F2 is equal to: 

 
2

_ 2 _ 2 2
aerp

damp F l F
aer

p d VL C S d
V

ρ =  
 

. (21) 
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Tab. 2. Various coefficients determined for different Mach numbers 

Ma 
δ

2_ FNC  dlF /2  q
BmC _  q

AmC _  q
FmC 2_  

PRODAS formula (11) PRODAS PRODAS formula (18) formula (17) 
0.4 0.6947 1.091 –57.3 –55.6 –1.7 –1.652 
0.6 0.7826 1.087 –58.1 –56.2 –1.9 –1.848 
0.7 0.8313 1.083 –59.1 –57.1 –2.0 –1.949 

0.75 0.8557 1.081 –59.6 –57.5 –2.1 –1.9998 
0.8 0.88 1.079 –60.0 –57.9 –2.1 –2.049 

 
It can also be calculated on the basis of the value of the force FF2 generated by a single fin F2, 
which is a half of the force generated by the pair of F2 fins:  

 
2

2 2 _ 2
1
2 4

aer
F F N F

VF N C Sρ
= = . (22) 

To calculate this force it is necessary to determine an angle of attack as the result of rolling motion 
with angular velocity p: 

 2
2

F
F

aer

p y
V

α = , (23) 

where yF2 is the distance from pressure centre of F2 to longitudinal axis Ox (see Fig. 3).  
Therefore, we have: 

 SV
V
pyCF aer

aer

F
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2
2

2_2
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The sum of rolling moments of all F2 fins gives: 

 2 2
_ 2 2 2 _ 2 24damp F F F N F F aer

aer

pL y F C y V S
V

δ ρ= − = − . (25) 

Comparing formulas (21) and (25) we obtain: 

 
2

2
_ 2_ 2 2 Fp

N Fl F
yC C
d

 = −  
 

. (26) 

Because yF2 cannot be less than 0.5d, it was assumed that yF2/d = 0.5. Comparison of the results 
calculated according to (26) and given by PRODAS is presented in Tab. 3.  
 

Tab. 3. Comparison of the results 

Ma 
δ

2_ FNC  p
FlC 2_  

PRODAS formula (26) PRODAS 
0.4 0.6947 –0.34735 –0.34158 
0.6 0.7826 –0.3913 –0.38483 
0.7 0.8313 –0.4156 –0.40876 

0.75 0.8557 –0.42785 –0.42073 
0.8 0.88 –0.44 –0.4327 

 
Results show that calculated by two ways values of the derivative p

FlC 2_  are close each other. 
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Presented above calculation of derivatives of moment coefficients are based on knowledge of 
the derivative δ

2_ FNC . This is the derivative of normal force generated by one pair of opposing fins 
F2. The results demonstrate the compatibility of other derivatives obtained in the manner 
described above and calculated by PRODAS. Thus, δ

2_ FNC  may also be used to calculate the 
additional normal and lateral forces generated by the deflection of the pair of fins F2:  

 NFN
aer

controly CSVF δρ δ
2_

2

_ 2
⋅= , (31) 

 MFN
aer

controlz CSVF δρ δ
2_

2

_ 2
⋅−= , (32) 

where angles δN and δM symbolize deflections of two pairs of F2 fins in lateral and longitudinal 
motions, respectively. δM is positive if the leading edges of fins are facing up, δN is positive if the 
leading edges of fins are facing right. 
These forces produce pitching and yawing moments: 

 2 _control F z controlM l F= − ⋅ , (33) 

 2 _control F y controlN l F= ⋅ . (34) 

 
4. Results of simulations 
 

Using the described above mathematical model of the bomb spatial motion series of 
simulations were performed. The main goal was to determine an effectiveness of fins F2 both in 
longitudinal and lateral motions. To achieve these goal simulations were done for three deflections 
of the fins: –10°, 0°, +10°. The case of 0° was compared with simulations performed with 
PRODAS. This allows estimating an accuracy of the developed model of the bomb spatial motion. 
Results are presented in Fig. 8-14. The initial bombing altitude was 2000 m and the initial velocity 
was 80 m/s. The bomb was in a horizontal position.  

Figure 8 shows the bomb velocity for the longitudinal control δM. We can see that there is a full 
agreement between PRODAS calculations and the case δM = 0°. For δM = –10° the course of 
velocity is the same as for δM = 0° but for δM = +10° the velocity is lower. For the lateral control 
(Fig. 9 – δN = ±10°) the bomb velocity is a little smaller than for δM = 0°. In the case of longitu-
dinal control, a strong reaction of the pitch angle Θ is observed (Fig. 10). Without this control, the 
final value of the pitch angle is equal to –70°. For δM = –10° we have Θ = –42° and for δM = –10° 
there is Θ = –98°. This means that the trajectory is more flat for δM=+10° and more steep for δM = 
= –10°. An influence of lateral control on pitch angle is weak (Fig. 11).  
 

  
 Fig. 8. Bomb velocity – longitudinal control Fig. 9. Bomb velocity – lateral control 
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 Fig. 10. Pitch angle – longitudinal control Fig. 11. Pitch angle – lateral control 
 

 

 

 
Fig. 12. Vertical trajectory of the bomb – longitudinal 

control 
 Fig. 13. Vertical trajectory of the bomb – lateral control 

 

 
Fig. 14. Horizontal trajectory of the bomb – lateral control 

 
Figure 12 confirms the earlier conclusions regarding the influence of longitudinal control δM on 

the bomb trajectory. The bombing range is from 1062 m to 2128 m. In the case of lateral control 
δN a slight decrease of bomb range is observed (Fig. 13). This control also causes lateral deviation 
in the range of ±269 m (Fig. 14). 
 
5. Conclusions 
 

The conducted analysis has proved that the additional fins are the effective method of bomb 
control both in longitudinal and lateral motions and they allow changing longitudinal and lateral 
ranges of the bomb. However, it must be emphasized that presented results are preliminary – only 
partial simulations were performed. Further theoretical studies should cover some variants of fins 
(a shape and an arrangement on the bomb) and some various initial conditions. Aerodynamic 
characteristics were calculated with PRODAS, which is not dedicated to symmetrical deflection of 
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opposite fins. Therefore, it is very important to verify presented in this paper method of recalcula-
tions of derivatives. A separate issue is the development of an effective automatic control system. 
However, the most important task is to conduct research investigations of aerodynamic 
characteristics with a wind tunnel and, finally, a set of experiments in real bombing conditions. 
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