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Abstract 

The paper presents results of the analysis of nonlinear oscillators with nonsmooth elements and nonlinear systems 
with nonsmooth forcing components. Main attention has been focused on highlighting specific properties of 
nonsmooth systems compared to their smooth counterparts. Nonsmooth transformation of the time variable and the 
replacement of initial issues by boundary problems have been taken as the base for the analytical method. Results of 
numerical simulations and computing in the form of graphs of displacements and velocity waveforms and attractors 
are presented. To fully identify the system's behaviour and meet high performance specifications recourse to model all 
dynamics together with their interactions has been taken into account. Strong interactions among the parts of the 
system are considered and the phenomenon of the impact is exhibited. It has been found that non-smooth dynamical 
systems reveal significant wealth of nonlinear phenomena, including a chaotic, that are unique to this potentially 
important class of nonlinear systems. In non-smooth systems at small change of parameters, a sudden transition from 
a stable periodic oscillation to the full range of chaotic oscillations may often occur. The dynamics of nonsmooth 
oscillations with shock external forcing is analysed by using a relatively new mathematical tool, which appears to be 
hyperbolic algebra. The key idea of this tool is steeped in of non-smooth time transformations (NSTT) for strongly 
nonlinear, but still smooth models.  

Keywords: nonlinear systems, impact oscillators, nonsmooth excitations, nonsmooth time transformation, hyperbolic 
numbers 

1. Introduction

Nonlinear dynamical systems are common models for many problems in physics, engineering,
chemistry, biology, medicine and social sciences [1–3]. The rapid development of the present technology 
and the ever-increasing requirements for installed devices imply stimulation of research centres not only 
to design new practical systems, but also to search for new components with improved operational 
characteristics compared to the previously used. A special attention of the search is focused on an 
analysis of the nonlinear low dimensional systems, which is motivated by the following attempts: 
 the low dimensional systems may exhibit very complex dynamics,
 the fundamental behaviour of nonlinear high dimensional systems can be successfully modelled

by the systems of low dimensions,
 a concept of the nonlinear normal modes very often allows to reduce a high dimensional system

to that with a few degree of freedom only,
 recent results show that a nonsmooth transformation of the time variable can be effective in an

exact analysis of nonsmooth nonlinear systems. In addition, the nonsmooth solutions with
a constant period of oscillations can be established.

It is well known that possible transitions to nonsmooth limits can make investigations especially 
difficult. This is because the dynamic methods were originally developed within the paradigm of 
smooth motions based on the classical theory of differential equations. The corresponding solutions 
often include quasi-harmonic expansions as a generic feature that explicitly points to the physical basis 
of these methods namely - the harmonic oscillator. Some of the techniques are also applicable to 
dynamical systems close to integrable but not necessarily linear. 
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The main objective of this paper is to introduce a unified physical basis for analyses of 
vibrations with essentially unharmonic, non-smooth or may be discontinuous time shapes.  
 
2. Basic properties of nonsmooth dynamical systems  

 
Over the past decade, dynamical systems, in which nonsmooth signals are generated, have 

gained increasing recognition in electromechanical engineering and other applied sciences, as the 
nonsmooth effects can already be really taken into account and there is no need of smoothing. This 
is due to the fact that have been developed new analytical and numerical tools suited for testing of 
nonsmooth systems. This problem has steadily gaining. In importance as the applications for the 
construction smart devices, electrical and electronic components with increasingly merge, as well 
as less and less resistance to current and voltage surge pulses are growing constantly [11, 13]. 
A key feature of the shock dynamics of nonlinear systems is the phenomenon of sudden change, 
when the periodic orbit reaches the barrier at zero speed, but nonzero acceleration. Then a small 
nonzero perturbation of such orbits may disclose slight irregular oscillations that bring different 
forms compared to the smooth nonlinear dynamics. 

Particularly vulnerable are the controllers (PLC) acquiring signals (data) from sensors spread 
over large areas and long lines combined with other controllers, control apparatus in the control 
room, etc. In the group of dynamic interactions, we introduce the basic division:   
• oscillations, characterized by a long duration of action, involving many cycles and the limited 

amplitude of characteristic signals (charge, flux, current, voltage),   
• single shock excitations of operations with short duration pulses and high amplitudes (e.g. the impact 

of an aircraft at the power line, the impact of electromagnetic waves during E-bomb explosions), 
• shock incident signals of repeated action, in which the strong pulse interactions occur 

periodically (e.g. ground fault arising during persistent short-circuit system with the ground, 
resonance resulting at favourable conditions for  the formation of resonance and ferroresonance, 
defibrillation, or stop of harmful ventricular flickers by using current pulses delivered by the 
defibrillator electrodes) [2, 4, 8, 9, 12, 15].   

Nonsmooth dynamical systems exhibit more complex and enriched dynamics, when compared with 
their smooth counterparts. However, the qualitative analysis and design is still the subject of intensive 
research. Recently, it has been found that nonsmooth dynamical systems reveal significant wealth of 
nonlinear phenomena, including a chaotic, that are unique to this potentially important class of 
nonlinear systems. Furthermore, in the case of highly nonlinear systems a significant unpredictability 
appears in the course of their dynamics. For instance, a sudden transition from a stable periodic 
oscillation to the full range of chaotic oscillations may often occur in nonsmooth system at small 
change of parameters, while such phenomenon is not observed in smooth configurations, if they are 
not in series with period doubling bifurcation [1, 3, 4, 6, 9]. The dynamics of nonsmooth oscillations 
with shock forcing is analysed in the sequel by using a relatively new mathematical tool, which 
appears to be hyperbolic algebra [7, 10, 13]. The key idea of this tool is steeped in of nonsmooth time 
transformations (NSTT) proposed originally in [11] for strongly nonlinear, but still smooth models. 
The NSTT is based on the algebra of hyperbolic numbers, an approach corresponding to the algebra of 
complex numbers and functions in the case of smooth excitations. The solution efficiency of NSTT 
results from explicit links between impact dynamics and hyperbolic algebras analogously to the link 
between harmonic oscillations and conventional complex analyses. Presently, this is one of the 
principal challenges at the crossroad between non-smooth dynamical systems, mathematics and 
computer science [5, 8, 16]. Basic details in this direction are presented in the next Section. 

3. Hyperbolic numbers and nonlinear phenomena 

The classical theory of differential equations usually avoids non-differentiable and 
discontinuous functions. In many such cases, it is still possible to adapt different smooth methods 
of the dynamic analyses through strongly non-linear algebraic manipulations with state vectors 
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splitting the phase space into multiple domains based on the system details. Possible alternatives to 
such approaches can be built on generating models developing essentially nonlinear/unharmonic 
behaviours as their inherent properties. Such models must be general and simple enough in order 
to play the role of physical basis. As shown in the sequel, new generating systems can be found by 
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Tab. 1. Representations of smooth linear and nonsmooth nonlinear dynamical systems  
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intentionally imposing the ‘worst case scenario’ on conventional methods in anticipation that 
failure of one asymptotic may point to its complementary counterpart. The tool presented here 
employs nonsmooth (impact) systems as a basis to describing not only impact but also smooth or 
even linear dynamics. This is built on the idea of nonsmooth time substitutions/transformations 
(NSTT) proposed originally for strongly nonlinear but still smooth models. The methodological 
role of NSTT is to reveal explicit links between impact dynamics and hyperbolic algebras 
analogously to the link between harmonic vibrations and conventional complex analyses.  

The hyperbolic numbers also called the “perplex numbers,” serve as coordinates in the 
Lorentzian plane in much the same way that the classic complex numbers serve as coordinates in 
the Euclidean plane. Such models appear to be general and simple enough in order to exhibit the 
role of physical basis of the studied problem. In the sequel, we are focused on the analysis of 
a class of nonconstant solutions of state variable equation, which is next related to fixed points in 
the scale of complexity, namely periodic orbits. Further, the studied system with discontinuities 
can be simplified by means of appropriate nonsmooth transformations of variables. The idea is that 
simplicity of a mathematical formalism is caused by hidden links between the corresponding 
generating models and subgroups of rigidbody motions [4, 12]. The present approach employs 
time histories of impact systems as new time arguments. The occurrence of such algebraic 
structures seems to be essential feature of the approach since it justifies and simplifies analytical 
manipulations with noninvertible temporal substitutions such as NSTT. 
The hyperbolic numbers called also perplex numbers, or split-complex numbers, are a two-
dimensional commutative algebra over the real numbers different from the complex numbers [5]. 
Every hyperbolic number has the form 
 w = x + uy, (1) 

where x and y are real numbers. The number u is similar to the imaginary unit j = √-1, except that  
 u2 = +1. (2) 

Just as for complex numbers, one can define the notion of a hyperbolic conjugate number as 
 w* = x – uy. (3) 

The modulus of a hyperbolic number w = x + uy is given by the isotropic quadratic form 
 |w| = 22 yxww −=∗⋅ . (4) 

There are two nontrivial idempotents given by q = (1 – u)/2 and q* = (1 + u)/2. Recall that 
idempotent means that qq = q and q*· q*= q*. Modules of both these elements are null 
 |q| = | q*| = |q · q*| = 0. (5) 

Very often it is convenient to use q and q* as an alternate basis for the hyperbolic plane. This basis 
is called the diagonal basis or null basis. The hyperbolic complex number w can be written in the 
null basis as 

 w = x + uy = (x - y)q+(x + y)q*. (6) 
Figures given in table 1 illustrate the hyperbolic plane. Note, that in contrast to the circle, each of 
the hyperbola branches is covered exactly once as the hyperbolic angle θ is varying in the infinite 
interval. Respective portions of the hyperbolic plane show subsets with modulus zero (red), one 
(blue), and minus one (green). The analog of Euler’s formula for the hyperbolic numbers is  
 exp(uθ) = cosh(θ) + u sinh(θ), (7) 

where θ is standing for the hyperbolic angle. 
The above equality can be derived from a power series expansion using the fact that cosh has 

only even powers, while sinh has odd powers only. The hyperbolic angle θ is twice the area of the 
sector A0x in figure presented in 2nd column and 5th position of the table 1. In addition, to 
hyperbolic angles θ, we can give the geometrical meaning of an area θ = 2⋅area(A0x) and this area 
has the same value measured in both “hyperbolic” and “Euclidean” way. By analogy with the 
circular angles ϕ defined on the unitary circle |z| =1, we can define cosh(θ) and sinh(θ) as the 
abscissa and the ordinate of the hyperbola point defined by θ, respectively. Then, such an approach 
still works for general cases by generating specific algebraic structures in terms of the coordinates. 
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In our case, the unipotent u is not a number but the discontinuous function of certain physical 
nature i.e., the rectangular cosine wave e(t). Indeed, since t is running then there is no unique 
choice for the magnitude e, whereas always e2 = 1. Therefore, identity (1) generates the hyperbolic 
structure from the very general properties of periodic processes. 

Despite the strong nonlinearity caused by impacts, the generic oscillator is also described by quite 
simple elementary functions such as triangular sine and rectangular cosine, say p(t) and p (t) = e(t), 
respectively, which are presented in figure given in 2nd column and 2nd position in table 1. 

Finally, let us mention that the hyperbolic plane has another natural basis associated with the 
two isotropic lines separating the hyperbolic quadrants as shown in 2nd column and 5th position of 
the table 1. The transition from one basis to another is given by e±= (1 ± e)/2 or, inversely, 1 = e+ + e- 

and e = e+ – e-. The elements e+ and e- are mutually annihilating (idempotents) so that e+e- = 0, e-2 = e- 
and e+2 = e+. It is clear also that ee+ = e+, and ee- = -e-. Note that this basis usually couples the 
corresponding smoothness (boundary) conditions. 

Therefore, for any periodic function x = x(t) whose period is T , we can write  

 x = X + Ye = X(e+ + e-) + Y (e+ – e-)= (X + Y )e+ +(X -Y )e- =X+(p)e++ X-(p)e-, (8) 

where 
 X+(p) =X(p)+Y(p)         and        X-(p) = X(p) – Y (p). (9) 

This suggests possible recipes for effective dealing with the differential equations of oscillation on 
entire time intervals, despite discontinuity and/or non-smoothness points.  
 
4. Fundamental properties of impact oscillators 

 
Impact oscillator is a term used herein to represent a system, which is periodically driven in 

a specific way, which also is an intermittent or continuous time-varying sequence of switchings with 
the limit restrictions. This important structure of non-smooth dynamical systems shows not only the 
typical features of smooth nonlinear systems, such as generic bifurcations, multiple solutions and chaos. 
Moreover, it also displays new phenomena appearing as, for instance, the sudden change of the system 
state, where a periodic orbit reaches the barrier at zero speed, but nonzero acceleration. Small nonzero 
perturbations of such orbits may or may not have to disclose the impact. 

An impact oscillator is represented by  
 ∞→=+ −   ntxtx n       ,0)()( 12

 , (10) 
where the upper dot stands for the time derivative. This mathematical model describes nonlinear 
oscillator shown in Table 1, right panel, first position. At the limit n = ∞, when the restoring force 
vanishes inside the interval -1 < x < 1 but becomes infinitely growing as the system reaches the 
potential barriers at x = ±1, the body displacement and its velocity are described by signals shown 
in table 1, right panel, second position. Alongside the above mathematical challenges, this case 
admits interpretation by means of the total energy  
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where the number 1/2 on the right-hand side corresponds to the initial conditions x(0) = 0 and 
.1)0( =x  Taking into account that the state variable of the oscillator reaches its amplitude value at 

zero kinetic energy, gives the estimate –n -1/(2n) ≤  x(t) ≤ n1/(2n)   for any time t. Since n 1/(2n) -› 1 as 
n -› ∞  then the limit oscillation is restricted by  the interval -1 ≤ x (t) ≤ 1. Inside of this interval, the 
second term on the left-hand side of expression (39) vanishes and hence, x & = ±1or x = ±t + α±, 
where α± are constants. By manipulating with the signs and constants, one can construct the 
sawtooth sine p(t) − triangular wave – since there is no other way to providing the periodicity 
condition. Therefore, one has the couple of periodic functions  

 )}()(),({)}(),({ tetptptxtx ==  , (12) 
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where p (t) = e(t) is a generalized derivative of the sawtooth sine and will be named as 
a rectangular cosine. The analogy of respective relations in the hyperbolic and the conventional 
complex planes is shown in table 1.   

The presence of functions p(t) and e(t) in further developed analytical algorithm is not a simple 
match of different pieces of solutions but it has its real physical basis and invokes specific 
mathematical tools. Their effectiveness is determined by the following statement:  

Any periodic process x(t) of the period T can be expressed through the dynamic state of the 
impact oscillator, {p(t), e(t)}, in the form of ‘ hyperbolic complex number’   

 )()()()( tepYpXtx += , (13) 
where the functions X(p) and Y(p) on the right-hand side are easily expressed through the original 
function x(t), if this function is known. 

The expression (13) can be qualified as non-smooth time transformation (NSTT), t → p, on the 
manifold of periodic oscillations. In a case when x(t) is an unknown periodic oscillation of some 
dynamical system, equations for X(p) and Y(p) components are obtained by substituting (13) into 
the corresponding differential equation of oscillation. Then either analytical or numerical 
procedures can be applied. To illustrate the above statement let us consider a first order nonlinear 
system representing a simple model of gas pipe flow driven by a regularly repeating rectangular 
pressure wave (Fig. 1). 
a) b) 
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Fig .1. Gas pipe: a) scheme, b) repeating rectangular wave driving pressure 

 
The flow q(t) is described by first-order non-linear differential equation 

 )/()()(
10

2 atepptkqtq +=+ , (14) 

where constants k = K/M, p0 = P0/M, p1 = P1/M denote the pipe parameters related to the pipe flow 
inertance and a =T/4 with T as a period of driving pressure. 

The corresponding periodic solution can be represented in the form 

 )/()()()( atepYpXtq += , (15) 
where p(t/a) and e(t/a) are triangular and rectangular waves with the period T = 4a. 

Substituting (15) in (14), gives 
 0)1(    ,2   ,)(

10
22 =±=+′=++′ YapakXYXapYXakY , (16) 

where upper sign ‘ denotes derivative with respect to p(t). 
Introducing the new unknowns U = X + Y and V = X – Y, brings the boundary value problem 

(16) to the form 
 )1()1(     ,    , 22 ±=±−=−′=+′ VUaHakVVaGakUU , (17) 

where G = p0 + p1 and H = p0 – p1 are constant. 
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Both equations in (17) are separable and thus admit general solutions of the form 
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where c1 and c2  are arbitrary constants of integration to be determined from the boundary 
conditions  
 ),1(),1(    ),,1(),1(

2121
cVcUcVcU −=−= . (19) 

Each real solution for the constants c1 and c2 gives a periodic solution of differential equation (14) 
and it is determined as follows 

 )(][
2
1][

2
1)( teVUVUtq −++= . (20) 

Fig. 2 shows what happens to the steady state flow profile as the period of pressure wave becomes 
twice longer. The model parameters are k = 1.5, p0 = 2.0, and p1=1.5. In cases T = 4 s and T = 8 s, 
the arbitrary constants are c1 = 222.15, c2= 0.08 and c1 = 17594.31, c2 = 65.77. To illustrate the 
above statement let us consider an oscillator with constants mass M = 1 kg connected with a spring 
exhibiting a hardening characteristic given by  
 )(cos)tan( 2 xxf −= , (21) 
where x denotes the non-dimensional state variable. 
 

 

 
Fig. 2. Solutions of (14) for two periods of driven pressure 

 

Such an oscillator is described by the following equation   

 0
)(cos

)tan(
2 =+

x
xx . (22) 

Following the introduced rules and making the substitutions  
 )(tpt →  and ),()()()( tepYpXtx +=                                 (23) 
yields a solution to the resulting boundary value problem and then substituting the result into (22) 
gives 
 ))1/)(sin(arcsin()( 2αα −= tptx , (24) 
where )sin(A=α with A as amplitude of oscillations. Then, the corresponding temporal mode of 
oscillation changes its shape from smooth quasi harmonic to nonsmooth triangular sine. 

313



 
Z. Trzaska 

6. Conclusions 
 

In this paper, a version of nonsmooth substitution, specifically the nonsmooth time variable 
transformation is applied to analyse waveforms of currents and voltages in nonlinear nonsmooth 
dynamical systems. The basic rules for algebraic and differential manipulations are presented to 
apply the nonsmooth argument substitutions in differential equation on the entire time interval.  

The two main features of the presented approach are to generate a particular algebraic structure 
and switching the initial value formulation to a boundary value problem. The nonsmooth time 
transformation shows an explicit link between the underlying dynamics and hyperbolic algebra, 
analogously to the link between the harmonic approach and complex analysis. These impose two 
principal features on the dynamical systems by generating specific algebraic structures and 
switching formulations to boundary-value problems. The effectiveness of the presented method 
has been illustrated by several examples of analysis of basic nonlinear nonsmooth circuits 
constituting starting points for more complex systems. The case of rectangular cosine waveform of 
incident excitation has been also considered and illustrated.  
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