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Abstract 

The article presents a data analysis and processing for tuning artificial neural network (ANN) of the anthrop 
technical system reliability, based on the opinions of experts. In general, the system reliability parameters are 
functions of operands – physical values – like time to failure, time between failures, duration times of specific 
reliability or operational states, number of failures in a time interval (event frequencies). These values are easier to be 
determined by an expert – operator with long year experience – than probabilistic model parameters. It is suggested 
that they be used in elicitation, for example linguistic estimates of the shares of reliability system elements in the 
system failure frequency.  

The numerical – linguistic elicitation of these opinions was carried out, which turned out to be uncorrelated and 
not suitable for tuning the network. Data processing method was used with the appropriate adopted analytic hierarchy 
process (AHP) geometric scale and matrix approximation method evaluations (logarithmic least squares method). 
Correlation analyses were performed for received input and output data of network and error of data processing 
method was determined. The results are shown in the example of elicitation and data correlation analyses for tuning 
the reliability neural network of the ship propulsion system. 
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1. Introduction 
 

Neural networks can be useful if there are difficulties for formulation and also for solution of 
an analytical model, but where the network tuning data are available. The data may be objective or 
subjective, i.e. derived from human memory. Such field is, among other domains, reliability and 
safety of anthrop technical systems, particularly complex systems where formal models may be 
burdened with considerable uncertainty. 

Tuning of a neural network consists in determining the values of network input/output (I/O) 
parameters. When objective data are not available, tuning may be based on expert judgements. 
There are fields of technology where experts can be found only among experienced operators. This 
is the case discussed in this paper. 

The neural network I/O parameter values must be correlated – the non-correlated values are 
obviously useless for tuning. Obtaining correlated subjective data is an essential difficulty in the 
considered case. There are several ways of effecting the level of correlation. First of all it is proper 
selection of experts and methods of judgment elicitation and applying effective methods of 
processing the obtained data. 

 
2. Data elicitation procedure 
 

Expert is assumed to be well acquainted with the subject he is expected to formulate on his 
judgment. The knowledge is connected with experience acquired by years-long practice. Expert 
should also be capable of formulating his judgement. This is connected with level of his education 
and the language used in the elicitation process, particularly as regards the parameters the expert is 
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expected to estimate. This may be the language of numerical or linguistic values. Numerical values 
are better but are more difficult to articulate – also errors in judgments are more likely. The analyst 
designing the reliability investigation method must select properly the category of available 
experts in each case, the number of experts and the elicitation language to be used. The number 
and qualifications of available experts may be a limitation. 

In the case of reliability, tuning pertains to characteristics expressed by probabilistic values, 
e.g. reliability function, unreliability function, failure rate, intensity function, or to physical values 
– operands in those expressions – e.g. failure frequency, time to failure or time between failures.  

Preferred candidates for experts are persons having experience in observing the operation 
process of the elicitation objects for sufficiently long time and also having the proper theoretical 
knowledge. The reliability analyst must determine the elicitation language and choose the 
available expert category. For instance, in the reliability investigation of nuclear power station 
operators of those objects may be counted on – high-class specialists with knowledge of the 
calculus of probability, and on seagoing ships – members of the crew with various education 
levels, generally not familiar with probability. 

Man is not a good probability estimator. His judgments show biases, weak calibration, 
incoherence and overconfidence tendency. Dependences may occur between expert judgments. 
These flaws cannot be fully removed in the elicitation phase [4, 9]. 

Table 1 contains data on presentation forms of probabilistic judgments. The type of probability 
distribution is connected with character of the respective event. For instance, the time to failure or 
maintenance time distributions is continuous and the human error probability is generally 
estimated by discrete distributions. 
 

Tab. 1. The forms of probabilistic judgments used in reliability 

Distribution type   Discrete: two-point or multipoint. 
Continuous: functional or empirical.  

Models of probability distributions Empirical. 
Formal – e.g. exponential, normal or Markov processes.  

Distribution dimension Single-dimensional or multi-dimensional. 
Frequency of events Frequent (p > 0.01) or rare (p < 0.01). 
Calibration  With or without calibration by objective data. 

 
Differentiation of frequent and rare events is essential. The latter may be out of the experience 

of experts, who have not observed them. Estimation of the probability of occurrence of rare events 
is based on intuition. As regards information in the last row of Tab. 1, significant is the fact of 
having or not having objective information, which could be used for calibration of the expert 
judgments. Without such information, the estimation results may bear considerable uncertainty. 

Reference [4] describes conditions to be fulfilled in the expert judgment elicitation phase. The 
main conditions pertain to the selection of experts, instructions, questionnaires and the way they 
should be filled-in and also independence of judgments and duration of the interview. They are 
supposed to formulate their judgments entirely on their own, relying on their personal experience 
[1, 4, 9]. 

 
3. Formal model of the system reliability 

 
The anthrop technical object of interest will be treated as a reliability system. It may be a no 

repairable or repairable system with negligible or non-negligible renewal time. The catastrophic 
failure state will be modelled as absorbing state. 

The first step in programming an investigation is to define its objective and assumptions 
concerning the investigation subject (definitions of the system and its operational states, formal 
reliability model, characteristics of the environment). With these assumptions, the system fault tree 
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(FT) can be constructed. The fault tree allows determining the sets of elements effecting the 
system reliability and also indirect relations, if it appears helpful in the elicitation process. 

We shall continue the consideration assuming the system reliability model as a Markov chain 
with two operational states: 1 – operational use state with (t) failure rate and 2 – maintenance 
state with μ(t) repair rate. It is a non-homogeneous process with finite renewal time. When 
transition rates are not time-dependent then the process becomes homogeneous and distributions of 
the state 1 and 2 duration time are exponential. The availability formula of a homogenous version 
of the system takes the form: 

 a(t) = P (t) = + exp[ ( + )t]. (1) 

Parameters of model (1) are the failure (t) and repair  (t) rates. In general, they are time-
dependent but may be approximated by constant or constant in intervals values    and . 
Statistical verification of such simplification is recommended [6, 11]. From the renewal equations:  

 lim
( )

= , (2) 

where ( ) = [ ( )] = expected value of (t); (t) = number of failures in time interval t,  = mean 
time between failure =MTBF. 

From formula (2) – after sufficiently long time:  
 =

( )
, (3) 

where: = mean number of failures in time interval t, which can be easily determined from the 
expert judgments. 

It is generally assumed that maintenance times have also exponential distributions with time-
independent transition rates  This assumption pertains to direct maintenance work time without 
organizational preparation time and waiting time for beginning the work. In practice, that 
preparation period may be chaotic, which makes probabilistic estimation of parameter difficult 
or even impossible. The following attitude to the estimation of parameter is proposed:  
a) adopting the model with negligible renewal time when that time is short compared with usage 

time: 
 R(t) = exp (  t), (4) 

where: = 1
MTBF = failure rate; t = time; 

b) adopting constant renewal time of individual devices; 
c)  from the formula: 

 =
  
  (5) 

where:  = mean renewal time, which can be estimated by the experts. 
In general, the reliability model parameters are functions of operands – physical values – like 

time to failure, time between failures, duration times of specific reliability or operational states, 
number of failures in a time interval (event frequencies). These values are easier to be determined 
by an expert than probabilistic model parameters. It is suggested that they be used in elicitation. It 
is possible to obtain linguistic values of shares of the basic events (system element failures) in the 
top event (system failure frequencies) of the system fault tree. The linguistic variables have 
associated sets of values (very rare, rare, occasional, frequent, very frequent). In the case of a large 
reliability system, the elicitation process of the shares of system elements in the failure frequencies 
may be subdivided into “layers”, for instance in the case of two layers of the system FT – higher 
and lower – first determine shares of the higher layer elements in the system failure frequencies 
and then shares of the lower layer elements in the failure frequencies of the higher layer objects. 
The principles of completeness and disjointness should be maintained. This procedure will 

,  
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increase the expert estimates as it shortens the “distance” of the related objects. Fig. 1 presents 
flow diagram of the elicitation and data processing algorithm for obtaining correlated sets suitable 
for NN tuning.  

 

 
Fig. 1. Algorithm of data analysis and processing for tuning the reliability neural network 

 
4. Processing of the expert data by the AHP method 

 
Linguistic estimates of the shares of reliability system elements in the system failure frequency 

consist in expert choice of the share value from the set of five values. The estimates are given 
numbers from 1 to 5. Differences of experts’ judgments indicate the scale of preferences in the in 
pairs comparing the linguistic estimates. Depending on these differences, the preferences are 
assigned weights ( ) in accordance with a scale function. Then the linguistic judgment matrix R 
is determined as: 

 = = , (6) 

where: = preference of i-th to j-th share (i,j = 1,2,…,n), with properties: > 0, =  , . 

Matrix R is consistent if its elements fulfil the condition: = , , ,k = 1,2,…,n. 
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Priority vector p= ( , … , )  is determined by approximation of matrix R with matrix , 
where: 

 = . (7) 

The preferred method of determining the priority vector is the logarithmic least squares method 
[10]. Measure of consistency of the processing is the difference between matrices P and R [14]:  

 d(R, P) =
( )

(r p ) . (8) 

The Xu scale [14] is a geometrical scale with parameter c = 2, in the form: 

 ( ) =
( )

.    (9) 

where: ( ) = index of the preference symbol s; c = parameter. 
It was proved [14] that with this particular value of c parameter the difference between the 

linguistic judgment matrix and the matrix derived from the priority vector is at a minimum. Tab. 2 
shows the Xu scale data with parameter c = 2. 
 

Tab. 2. AHP geometrical scale data (c = 2) 

Differences of expert judgments AHP geometrical scale with parameter c = 2 

si I(s) r(s) Description of preference 
0 so 0 1 equally important 
1 s2 2 2 moderately more important 
2 s4 4 4 strongly more important 
3 s6 6 8 evidently more important 
4 s8 8 16 extremely more important 
-1 s-2 -2 0.5 moderately less important 
-2 s-4 -4 0.25 strongly less important 
-3 s-6 -6 0.125 evidently less important 
-4 s-8 -8 0.0625 extremely less important 

 
5. The data correlation problem 

 
Data elicited from experts may have a numerical or linguistic form. The latter are adjectives 

valuating intensity of the measured variable of an object, process or phenomenon. These adjectives 
may be assigned natural numbers, ascending with increasing intensity, i.e. perform ranking of the 
measured value. Estimates of the linguistic values are done by means of ordered scales. The scales 
have order relations. As indicated above, the numerical values, in the case of physical objects 
observed in the operation process, pertain to the values of independent variables in expressions 
defining the reliability model parameters. They are estimated in the interval scales. Such scales 
have constant unit of measurement, order relation and optionally chosen zero point. 

The correlation analysis of values measured on the above presented scales is carried out by 
non-parametric methods. They compensate effects of the standing-out measurements and non-
normality of the elicited values [13]. 

To the correlation, analysis of data obtained from the elicitation process the R. Spearman's 
method is applied. The output and input data are ranked by assigning them ascending natural 
numbers starting from 1. The numbers are ranks. The ranking process may be performed also with 
decreasing sequence. The Spearman's rank correlation coefficient is determined from the following 
formula [13]: 
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 = 1
( )

, (10) 

where: di = difference between the ranks of corresponding characteristic values; correlation 
coefficient - rs  

Correlation coefficient determined by formula (10) is applicable only to a random sample and 
correlation of the general population should also be checked. For that the zero hypothesis Ho

elation coefficient of the general population, is verified against the alternative 
hypothesis H1 t-Student test is used for verification. It is assumed that the population has 
the Student distribution with n – 1 degrees of freedom. The test has the form: 
 = 1, (11) 

where: n = size of the sample. 
The test value t is compared with critical value   determined from the Student tables for an 

assumed significance level p and n –  2 degrees of freedom. If > , then hypothesis  is 
rejected and hypothesis H1 is accepted (correlation exists also in the general population) [13]. 

 
6. Example 
 
6.1. Object of analysis, elicitation 
 

 
Fig. 2. Fault tree of a ship propulsion system ICF, Legend: PS – propulsion system, ICF – immediate catastrophic 

failure, CF – catastrophic failure. SSi – subsystem, i = 1 – fuel oil subsystem, 2 – sea water cooling subs.,  
3 – low temperature fresh water cooling subs., 4 – high temperature fresh water cooling subs., 5 – starting 
air subs., 6 – lubrication oil subs., 7 – cylinder lubrication oil subs., 8 – electrical subs ., 9 – main engine 
subs., 10 – remote control subs., 11 – propeller + shaft line subs. SD1k – set of devices, ik = 11 – fuel oil 
service tanks, 12 – f. O. Supply pumps, 13 – f. o. Circulating pumps, 14 – f. o. heaters, 15 – filters,  
16 – viscosity control arrangement, 17 – piping heating up steam arrangement 

 
The example illustrates reliability analysis of a container carrier propulsion system (PS) with slow-

speed piston internal combustion engine and screw propeller, operating in the North Atlantic. 
Reliability was analysed for immediate catastrophic failures (ICF) of the PS. Fig. 2 presents the FT of 
the propulsion system. It was assumed that ICFs could occur only during active usage state of the 
system, i.e. during the ship sea voyage. Share of that operating state time in the entire ship usage time 
was  = 0.8396 (mean value of 50 expert judgments). Detailed data of the example can be found in [1-3]. 

A questionnaire was presented with definitions of the investigated object, "catastrophic failure" 
and “sea traffic” as well as tables to be filled in by the experts and suggestions how to do it. The 
questionnaire was filled in by 50 experts – ship engineers with multi-year experience. Questions 
were asked about annually frequency of the propulsion system ICF type events, share of 
subsystem (SS) failures in the PS system failure frequency and share of module (set of devices – 
SD) ICF type failures in the SS failure frequencies.  

240



 
Data Analysis and Processing for the System Reliability Neural Network Based on Expert Judgment 

6.2. Analysis of the correlation of elicitation results  
 
As regards the propulsion system as a whole, experts gave their subjective estimates of the ICF 

type failures per year in numbers and linguistically by marking one of fields in the order scale 
containing numbers and descriptions of that failure frequency. Fig. 3 presents a histogram of the 
system PS failure frequency per year. The histogram shows a distribution close to the normal 
distribution, which may be considered correct in the case of observation of dangerous events with 
more or less steady frequency of occurrence.  
 

 
Fig. 3. Distribution of the propulsion system ICF failure frequency 

 
Elicitation of the ICF type failures of SS subsystems and their SD modules consisted in 

marking appropriate fields in the questionnaire order scales (see Appendix 1). They indicated the 
share of a given SS or SD in the ICF type failure frequency of a direct higher-level object, i.e. of 
the propulsion system in the case of SSs and of a specific SS in the case of SD modules. The 
shares were in pairs compared and the respective differences of numbers were treated as numerical 
estimates of experts' preferences. The preferences were assigned values in accordance with the 
geometrical scale function. 

Table 1-3 present selected verification results of correlation between the system PS and subsystems  
SSi (i = 1,2,…,11),  between the subsystem SS1 and its sets of devices SD1k, (k=1,2,…,7) and between 
the system PS and sets of devices SD1k (k=1,2,…,7) of the first subsystem  SS1 data appropriately. The 
correlation coefficients were within the 0.971 – 0.990 range, so the data sets appeared well-correlated 
(nearly total correlation according to [13]). The zero correlation in the general population H0 
hypothesis was rejected at the 0.01 level. The consistency measure Xu (8) was zero. 

 
Tab. 3. Spearman correlations between system PS and SSi, (i=1,2,…,11) estimates after processing  

Subsystems SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 SS11 
Spearman 

coefficients  0.990 0.983 0.983 0.984 0.987 0.985 0.982 0.992 0.993 0.987 0.982 
t test 50.3 38.0 37.4 39.2 43.7 40.6 37.1 55.3 58.6 44.6 36.9

tp (p=0.01) 2.68 

Hypothesis H0

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

rejecte
d 

reject
ed 

 
Tab. 4. Spearman correlations between subsystem SS1 and SD1k, (k= 1,2,…,7) estimates after processing  

Sets of devices SD11 SD12 SD13 SD14 SD15 SD16 SD17 
Spearman 

coefficients  0.971 0.985 0.986 0.976 0.982 0.987 0.978 
t test 28.7 41.0 42.0 31.4 37.3 44.1 33.3 

tp (p = 0.01) 2.68 
Hypothesis H0 rejected rejected rejected rejected rejected rejected rejected 
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Tab. 5. Spearman correlations between PS and sets of devices SD1k (k=1,2,…,7) estimates in the subsystem SS1, 
after processing 

SD1k* SD11 SD12 SD13 SD14 SD15 SD16 SD17 
Spearman 

coefficients  0.982 0.990 0.990 0.987 0.990 0.993 0.987 
t test 37.1 51.3 50.3 43.5 51.4 59.2 44.6 

tp (p = 0.01) 2.68 
Hypothesis H0 rejected rejected rejected rejected rejected rejected rejected 

 
7. Conclusion  
 

The above presented data allow concluding that the used neural network tuning procedure 
gives correct results. It appears appropriate when experts are experienced operators of the 
reliability analysis objects. It may be useful for network tuning in the reliability analyses and for 
the technical system risk management. Further study would be focused on adopting the available 
probabilistic models for calibrating the expert data, which are extremely crucial, but often 
uncertain in the subjective investigations. 
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