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Abstract 

This paper shows results of numerical solutions the modified Reynolds equations for laminar unsteady oil flow in 
slide journal bearing gap. Laminar unsteady oil flow is performed during periodic and unperiodic perturbations of 
bearing load or is caused by the changes of gap height in time. Above perturbations occur mostly during the starting 
and stopping of machine. During modelling crossbar bearing operations in combustion engines, bearing movement 
perturbations from engine vertical vibrations causes velocity flow perturbations of lubricating oil on the bearing race 
and on the bearing slider in the circumferential direction. This solution example applies to isothermal bearing model 
with infinity length. Lubricating oil used in this model has Newtonian properties and constant dynamic viscosity. 
Perturbations connected with unsteady lubricating oil velocity in the circumferential direction on the slide bearing 
and on the slider of bearing were taken into consideration. Results are presented in the dimensionless hydrodynamic 
pressure and velocity distribution diagrams. Received solutions were compared with the solution received by the 
stationary lubrication flow in the slide journal bearing, which were made with the same parameter assumption by 
constant dynamic oil viscosity. Isothermal bearing model is similar to friction node model by steady-state heat load 
conditions. 
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1. Introduction 
 

This article refer to the unsteady, laminar flows issue, in which modified Reynolds number Re* 
is [4, 5] smaller or equal to 2. Laminar, unsteady oil flow is performed during periodic and 
unperiodic perturbations of bearing load or is caused by the changes of gap height in the time. 
Above perturbations occur mostly during the starting and stopping of machine. Lubricated oil 
disturbance velocity the pin and on the bearing shell was also consider in the article. Reynolds 
equation system describing Newtonian oil flow in the gap of transversal slide bearing was 
discussed in the articles [3, 4]. Velocity perturbations of oil lubricated flow on the pin can be 
caused by torsion pin vibrations during the rotary movement of the shaft. Perturbations are 
proportional to torsion vibration amplitude, frequent constraint and to pin radius of the shaft. Oil 
velocity perturbations on the shell surface can be caused by rotary vibration of the shell together 
with bearing casing. This movement can be considered as kinematical constraint for whole bearing 
friction node. Isothermal bearing model can be approximate to bearing operation in friction node 
under steady-state thermal load conditions for example bearing in generating set on ship. 
 
2. Reynolds equation and hydrodynamic pressure  
 

 The unsteady, laminar and isotherm flow Newtonian oil in journal bearing gap is described for 
modified Reynolds equation [1, 2] from Newtonian oil with constant and variable dynamic 
viscosity depended for pressure. In considered model we assume small unsteady disturbances and 
in order to maintain the laminar flow, oil velocity Vi

* and pressure p1
* are total of dependent 

quantities iV~ ; 1
~p  and independent quantities  from time [3, 5] according to equation (1). 1; pVi
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Unsteady components of dimensionless oil velocity and pressure
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 where:  
lar velocity perturbations in unsteady flow, 

 are [4] in following form of 
inf nite series: 
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C ponents of oil v
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om elocity V , Vr, Vz in cylindrical co-ordinates r, ,z have presented as 
1 V2,V3 in dimensionless [1] form:  
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 - angular journal velocity, 
R - radius of the journal, 

 - dimensionless radial c ( 34 1010
2b - length of bearing, 

ing length, L1 - dimensionless bear
 - radial clearance:  
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Putting following quantities [1], [4]: dimensionless values d

 (5)  

Rule of putting dimensionless velocity and pressure quantities in unsteady and steady part of 
the

ensity 1, hydrodynamic pressure 
 time t1, longitudinal gap height h1, radial co-ordinate r1 and co-ordinate z1. 

 tt        ,       , 101010 tppp

. 

p1 ,

           hh     , r1r     , zbz 111 R

 flow stays similar. Following symbols with bottom zero index signify density, dynamic 
viscosity, pressure and time describe characteristic dimension values assigned to adequate 
quantities. Reynolds number Re, modified Reynolds number Re* and Strouhal number St are in 
form [1]:  
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(i=1) an 1). Dimensionless d longitudinal (i=3) on the journal (r1 = 0) and the sleeve (r  = h
components  unsteady flow for circumference of oil velocity and for longitudinal of oil 
vel
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ocity we assume on the oscillating journal and sleeve surface the following boundary 
conditions:  
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Quantity V are factor of scale for velocity perturbations, dependent for accepta
(2). Velocity perturbation U0 in direction  on the journal and velocity perturbation Uh on the 
sleeve, velocity perturbation V0 in direction z1 on the journal and Vh on the sleeve have following 
dim

nt of term series 

ensionless form:  
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Presented for formulas (7) components velocity pertur
of pressure perturbation by coordinates  and z1. Reynolds equations [1, 3, 4] for pressure 
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bations include derivatives components 
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ponents 1p by laminar unsteady oil flow have form:  
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Reynolds equation describing total dimensionless pressure p1
* (sum steady and unsteady 

components) in oil journal bearing gap [1] by unsteady, laminar, isotherm Newtonian flow along 
with disturbances of peripheral velocity V10 on the journal and V1h on the sleeve and disturbances 
of velocity on journal length V30 on the journal and V3h on the sleeve has following form: 
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The equation solution (12) for bearing with infinity length determine unsteady dimensionless 
ydrodynamic pressure function 1

~ph in following [2] form:  
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Pressure p10 is located in the oil gap by steady flow and by constant oil dynamic viscosity. 

 
Fig. 1. Pressure distributions 1

~p  in place =160  in the time t1 by velocity perturbations: 1) V10=0.05; V1h=0; 2) 
V10=0.05; V1h=0.05  

 
Pressure perturbation course in point =160° presented Fig.1 by following circumferential 

velocity perturbations: 

2. velocity perturbations on the journal V10= 0.05 and on the sleeve V1h= 0.05. 
Two velocities pertu bations will analysed in this article.  

in 

erturbations on the 
aused by torsional 

ib ent frame bearing (on the sleeve).In 
e t0 was taken into account as a propagation period of 
l. Express by a formula (7) are in form:  

1p~

1. velocity perturbations on the journal V10= 0.05 and on the sleeve V1h=0, 

r
 
3. Velocity distribution bearing gap 
 

We analyst cylindrical bearing infinite length with circumferential velocity p
jou perturbations are crnal V10 and on the sleeve V1h. Circumferential velocity 

rations shaft (on the journal) or circumferential displacemv
the further numerical analysis relation tim
xial velocity perturbation of lubricating oia
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 In case where oil velocity perturbations are caused by forced vibrations of engine then the 
number n in equation (5) define multiplication of perturbation frequency 0 to angular velocity of 
engine crankshaft . Multiplication factor n is equal to number of cylinder c in two-stroke engine 

=2) or in four-stroke engine (s=4) to number of cylinders c/2: 
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Solution Reynolds equation (11) for cylindrical bearing infinity length and Reynolds boundary 
conditions where film oils ended = are in form: 
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Components of series P(k), A(k) and B(k) from formula (19) are in followi

k
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Additional symbol s marking dimensionless parameter height of gap ( ). In numerical 
calculation example oil with constant density was assume, what is equivalent to quantity 1. In 
presented calculation way an expression value is assumed n Re* = 12, what is approximately  

1s0

1

 

Fig. 2. Velocity distribution 1
~V  in the circumferential direction, by velocity perturbations V10 = 0.05, V1h = 0 in gap 

height s, in the time t1: 0; 0.2; 0.3; 0,4; 0,5; 0,6; 0.7; 0,8; 0,9; 1  
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Velocity distribution 1

~V  in the circumferential direction by velocFig. 3. ity perturbations V10 = 0.05, V1h = 0.05, in 
gap height s, in the time t1: 0; 0.2; 0.3; 0,4; 0,5; 0,6; 0.7; 0,8; 0,9; 1 

 
equivalent to force over first frequency torsion vibrations force of six cylinder engine shaft. 
Examples apply to bearing with constant dependent eccentricity =0.6. Numerical examples 
velocity distributions are by two circumferential velocity perturbations.  

Determine a distributions of circumferential velocity in gap height s by gap crosswise section 
of coordinate =160°. The results velocity distribution in the time t1 show Fig. 2 and 3. Velocity 
perturbation are values different from initial perturbations V10, V1h. They are smaller than initial  
 

 a  b 

Fig. 4. Velocity distribution  in the circumferential direction in gap height s in the time t1  by velocity 
perturbations a)V10 = 0.05, V1h = 0; b) V10 = 0.05, V1h = 0.05  

 
values, the values of the opposite sign achieve, and the amplitude of changes are larger than 

initial disorders (in the example about 25%). Graphs velocity distributions from Fig. 2 are 
unsymmetrical in the time t1. Graphs velocity distributions from Fig. 3 are symmetrical in the time 
t1. Causes are pressure distributions [2] in the time t1 from Fig. 1. In Fig. 4 presented three-
dimensional graphs distributions of velocity perturbation 

1
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4. Conclusions 
 

Presented Reynolds Equation solution for unsteady laminar Newtonian flow of lubricated oil to 
enable initial opinion to hydrodynamic pressure and velocity distribution as a basic slide bearing 
operating parameter. Unsteady velocity perturbation on the journal and sleeve effect on 
hydrodynamic pressure and velocity distribution in lubricated gap. Pressure variation in bearing 
have periodical character equal to periodical velocity perturbation time and this variations value 
and character depend on type of perturbation. Pressure increase and decrease and velocity 
distributions is not symmetrical during the perturbation time. Author is aware of simplifications 
that were assumed in presented model which apply to Newtonian oil and to isothermal bearing 
model. Despite that presented calculation example apply to bearing with infinity length, obtained 
conclusions can be useful to pressure and velocity distribution by laminar, unsteady lubrication of 
cylindrical slide bearing with finite length.  
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