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Abstract 

A technique of the temperature dependent thermal diffusivity investigation has been analysed. The technique is 
based on the modified Ångström method utilising periodic temperature oscillations in a slab specimen. The additional 
modification consists of imposing linear temperature changes – application of linear scans. This scanning mode 
procedure enables investigation of the thermal diffusivity over a certain temperature interval. The thermal diffusivity 
is calculated independently from two relations based on the measured amplitude attenuation and the measured phase 
shift of the temperature oscillation passing through the investigated specimen. The paper discuses the problem of the 
thermal diffusivity identification uncertainty. As a result correction factors for the thermal diffusivity data derived 
from simplified formulae have been determined. The procedure of the thermal diffusivity measurement has been 
verified by numerical modelling. Comparison between the initial and response signals with illustration of the linear 
scan imposed to a basic oscillation with reference to a classical procedure of subsequent steps, illustration of the 
approximation error analysis methodology and results in the form of a thermal diffusivity correction factor, 
comparison between the uncorrected and corrected applying in numerical modelling of the temperature oscillation 
experiment are presented in the paper. 
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1. Introduction 
 

Periodic heating or so-called temperature (thermal) wave technique is probably the oldest one 
transient technique for investigation of thermophysical properties. Initially described by Ångström 
in 1861 in application for investigation of metal bars and extended within limits of certain heat 
conduction problem models [5, 14] it for many years was treated as a standard thermophysical 
property measurement method. However, in view of a growing application of mostly laser flash 
and pulse techniques (comp. e.g. [8, 10]) in the last decades it has been limited in its general 
application. Nowadays we can observe renaissance of the temperature oscillation technique [3] 
especially in specific domains like microscopic measurements, studies of thermal processes [6, 7] 
and investigation of special materials [2]. It is due to some advantages of the thermal wave method 
like possibility of application for different materials [12], the unique potential for a cross-
validation by comparing results obtained from the amplitude and phase analyses [1, 15], 
possibility of multiproperty investigation, spectral Fourier studies and thermal cycling 
measurements [15], possibility of application with different instrumentation [5, 7].  
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One of the Ångström’s method modifications was developed for investigation of bad thermal 
conductors studied as plates [1, 2]. The thermal diffusivity of such specimens is obtained in cross-
planar direction applying solutions of a certain heat conduction problem with a temperature 
oscillation applied over a certain steady mean temperature [4]. In the present paper an extension of 
the above-described modification is analysed. This extension is based of introducing a scanning 
mode measurement procedure that means that measurements are performed with oscillations 
applied to a linearly changed mean temperature.  
 
2. Theory 
 

Assuming that the temperature oscillation amplitude – is relatively small: 

 mTmax  (1) 

and that the oscillation frequency is high enough to confine several oscillations within a single 
ramp of a steady or a linearly changed temperature: 

 ,,...,1,0,11

1
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where: 
max - amplitude of the temperature oscillation (“temperature wave”, “thermal wave”), 

Tm - certain mean temperature (temperature level), 
 - oscillation period, 

the problem can be treated as superposition of two linear problems of heat conduction. The first 
one refers to the temperature oscillations, the second to linear temperature changes in time. The 
individual problems are referred as regular heating regime of the third and second type 
respectively [10]. 

If we focus our attention on the temperature differences with respect to the initial 
temperature T0: 

 0,, TxTx , (3) 

which is uniform over the object i.e. a plate of thickness l at =0, than mathematical formulation 
of component problems is given by the governing equation: 

 ,,2

2

pc
a

x
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where: 
T - temperature, 
x - space coordinate, 
 - time, 
 - temperature changes referred to Tm, 

x - space coordinate, 
 - time, 

a - thermal diffusivity (TD), 
  - thermal conductivity (TC), 
 - thermal conductivity (TC), 

cp - specific heat, 
with the initial condition: 
 00,x  at 0  x  l for  = 0, (5) 

and two sets of boundary conditions (BC), one for harmonic temperature changes problem (Fig. 1): 
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 0,0
x

, fAl 2sin, 0 , (6) 

and one for the linear temperature changes problem: 

 0,0
x

, bTl
0

, . (7) 
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Fig. 1. Comparison between the initial and response signals (a) with illustration of the linear scan imposed to a basic 

oscillation with reference to a classical procedure of subsequent steps (b) 
 

The solution of the BC (6) problem is [4]: 
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where (Fig. 1.a): 
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while for the BC given by Eq. (7) we get [4]: 
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The series terms with exponential components in (8) and (12) represents transients that die 
away as    . The representative solution of the steady oscillations over a linearly changed 
temperature expressed by superposition of the two appropriate components is: 

 
a

lxbbfAx
2

2sin,
22

0  .  (13) 
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3. Thermal diffusivity identification procedure 
 
Knowing the parameter l and having obtained the amplitude of temperature response 

attenuation  and the response phase lag  one can evaluate the parameter k (or directly the 
thermal diffusivity a) by solving nonlinear Eqs (9) and (10). These two solutions should be the 
same that creates opportunity for the procedure validation. However, because the solutions can not 
be expressed in direct form, and because numerical routine in the case of Eq. (10) is badly 
conditioned, appropriate simplifications of (9) and (10) are usually applied [1, 2]. These 
approximations lead to the following formulae: 

 2ln2ln 2

2

2

2 llfa , (14) 

 2

2

2

2 llfa , (15) 

the first of which is the “amplitude” one and the second is the “phase” second respectively. It is 
interesting that Eq. (15) has the same form as that obtained for the semi-infinite solid problem 
solution (comp. e.g. [4, 14] 16]). However these solutions are valid only under the assumption that 
the frequency f is high enough i.e.: 

 2

2
min

min l
aKfKlk , (16) 

where Kmin is a certain parameter defining limits for the approximation validity. 
The thermal diffusivity can be determined from amplitude and phase measurements. In both 

cases the two temperature signals are analysed: one corresponding to the thermally treated surface 
, x=l) and the response signal , x=0). The two signals are usually approximated by the 

following function: 

 NnnnDCBfAf ,...,1,0,1;2sin)( , (17) 

where: 
A,B, C, D - the identified coefficients in the course of the applied curve fitting procedure, 
n - indexes of the following time periods, 
N - total number of the analysed periods, 
and parameters  and  are calculated from: 

 ,, ,.,
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where: 
x=l - denotes the input temperature oscillation with a linear offset, 
x=0 - denotes the response signal. 

As it follows from Eq. (17) the procedure is applied within time intervals corresponding to 
every consecutive oscillation period n. Next, the thermal diffusivity can be derived: 
- directly from simplified relations (14) and (15), 
- after correction of the Eqs (14) and (15) results applying differential formulae, 
- from numerical solution of nonlinear Eqs (9) and (10) expressed as [12]: 

 l
a

fl
a

f 2cos2cosh2 , (19) 
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a
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with reference to 
a
flkl  or a regarded as unknown parameter. 

Analysing Eq. (13) one can propose another identification procedure based on the last right 
hand term utilisation. In such a case the thermal diffusivity is obtained from: 

 
nxnlx CC
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,0,

2

2
. (21) 

This procedure corresponds to the thermal diffusivity identification applying regular heating 
regime of a second kind methodology (comp. e.g. [9, 10]). However, in real measurements results 
based on this strategy could be strongly affected by the temperature bias caused by heat loses not 
accounted for in the above described mathematical model. 

Summing up, the following advantages of the proposed modification of the temperature 
oscillation technique by imposing linear temperature changes can be indicated: 
- the new procedure does not affect the original high thermal (temperature) resolution 

measurements possibility, 
- the high thermal resolution TD data can be gathered not only at certain temperatures but also 

within a certain temperature interval (Fig. 1.b), 
- the original chance for a cross-validation of the results by comparing the “amplitude” and 

“phase” data is supplemented by opportunity of TD calculation from Eq. (21) at scanning mode 
sequences. 

  
4. Analysis of TD identification procedure performance 

 
There are several aspects of implementation of the above-described technique in practice. First 

of all the effects of the initial transients prior to regular heating regime segments needs to be 
discussed. Regular heating regime conditions, in that case linear (2-nd kind) and periodic  
(3-rd kind), are disturbed at the oscillation start and at every change of the imposed temperature 
offset step (Fig. 1.b, points A, B and C). The dynamics of the heat transfer stabilisation process is 
described by time dependent terms in Egs (8) and (12) respectively. Comparing the appropriate 
exponents in exponential terms one can get: 
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This means that the transient caused by the offset temperature heating /cooling rate change dies 
faster than the basic one. Only the first terms of the compared series are of the same range. The 
same the conclusion can be drawn that the modification does not affect the original procedure 
metrological limits. 

The second problem concerns applying simplified formulae (14) and (15) for the TD 
identification when analysing the experimental results. In such a case one can avoid solving non-
linear problems given by Eqs (19) and (20). From the last two the second one is badly conditioned 
in numerical means. It is because of a periodic character of the involved functions. However, when 
simplified formulae are utilised the experiment needs to be optimised for the condition (16). When 
defining certain Kmin values1 the appropriate limitations of the identification accuracy need to be 
kept in mind. Moreover, regarding possible temperature dependence of the thermal diffusivity the 
kl parameter changes related to that phenomenon should be taken into account. This is the reason 
                                                 
1 That could be different between the “phase” and the “amplitude” procedures.  
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for a more thorough examination of the approximation error behaviour. 
In our case the error related to utilisation of the simplified formulae (14) and (15) has been 

analysed using a differential approximation. The method is illustrated in Fig. 2. It is based on the 
assumption of asymptotic convergence of a certain approximate function fapp( ) to the exact one 
f( ) with increasing : 

 0appff , (23) 

where: 
  - independent variable, 
 - dependent variable. 

In such a case the differential d  can be expressed as: 

 
f
ddfd 1 , (24) 
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Fig. 2. Illustration of the approximation error analysis methodology (a) and results in the form of a thermal 

diffusivity correction factor (b) for the case when simplified formulae (14) and (15) for the TD calculation are 
applied (depicted curves correspond to the “phase” problem given by Eq. (20)) 

 
Tab. 1. Correction factors a for the TD obtained from simplified formulae recalculation 

a a a kl 
phase amplitude 

kl 
phase amplitude 

kl 
phase amplitude

1 0.8330 0.8858 1.7 1.0010 0.9648 2.4 1.0070 1.0006 
1.05 0.8580 0.8817 1.75 1.0121 0.9700 2.45 1.0061 1.0011 
1.1 0.8806 0.8828 1.8 1.0136 0.9746 2.5 1.0053 1.0015 

1.15 0.9011 0.8870 1.85 1.0144 0.9788 2.55 1.0045 1.0018 
1.2 0.9195 0.8931 1.9 1.0147 0.9825 2.6 1.0038 1.0020 

1.25 0.9357 0.9003 1.95 1.0146 0.9858 2.65 1.0032 1.0021 
1.3 0.9504 0.9081 2 1.0142 0.9887 2.7 1.0026 1.0021 

1.35 0.9631 0.9162 2.05 1.0136 0.9912 2.75 1.0021 1.0021 
1.4 0.9741 0.9241 2.1 1.0128 0.9933 2.8 1.0017 1.0020 

1.45 0.9834 0.9319 2.15 1.0119 0.9952 2.85 1.0013 1.0020 
1.5 0.9912 0.9394 2.2 1.0109 0.9967 2.9 1.0010 1.0019 

1.55 0.9977 0.9465 2.25 1.0099 0.9980 2.95 1.0007 1.0017 
1.6 1.0029 0.9531 2.3 1.0089 0.9991 3.00 1.0005 1.0016 

1.65 1.0069 0.9592 2.35 1.0079 0.9999 3.05 1.0003 1.0014 
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and the error due to exchange of the initial problem of the independent variable  identification: 

 0exp f , (25) 

by its approximation: 

 0ppexp af , (26) 

can be corrected as follows: 
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where: 
exp - denotes a certain (experimental) ordinate value, 
app - denotes solution of the approximate problem given by Eq. (26), 
corr - denotes corrected value of the solution. 

Assuming =kl and taking: 

 
analysis, phasefor tanharctg

analysis, amplitudefor 2cos2cosh
klkltg

klkl  (27) 

for problems (19) and (20) respectively and defining: 
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appcorr

kl
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kl , (28) 

one can get from Eq. (11): 

 appapp2corr
1

1 aaa a
kl

 (29) 

where: 
kl  - is the relative difference of the corrected solution with reference to the approximate one, 
a - correction factor for the TD recalculation according to Eq. (29). 

The parameter a corresponds to the TD identification uncertainty while applying simplified 
formulae (14) and (15) respectively. The correction factor values obtained using the above-
described methodology are depicted in Fig. 2.b and shown in Table 1. These values can also be 
applied for correction of the TD calculated from (14) and (15). In such a case an onerous 
procedure of solving non-linear problems (19) and (20) can be avoided. From comparison of 
numerical solutions of exact problems (19) and (20) with corrected results obtained from (14) and 
(15) it follows that this correction procedure ensures the accuracy of about 2% while kl > 1.0, and 
better than 1 % while kl > 1.5.  

According to [2] the recommended value for Kmin is 1.5. However, for Kmin strictly equal to 1.5 
the “amplitude” thermal diffusivity identified when applying Eq. (14) is overestimated by about 
6.5 % (Fig. 2.b). Applying the obtained values of a (Tab. 1) one can get new limits for Kmin: 

 25.2;87.1 %1min,%2min, KK , (30) 

where 2% and 1% - denotes the corresponding theoretical accuracy of identification for both: 
amplitude and phase formulae. 
 
5. Numerical test of the TD correction procedure 
 

The numerical modelling has been performed to illustrate the proposed technique of the 
thermal diffusivity measurement performance. In the course of simulation both effects of the 

345

. 



 
A. J. Panas, M. Nowakowski 

linear scans and TD data correction according to Eq. (25) have been investigated. The assumed 
model was referred to real experiments performed while the temperature oscillation procedure 
has been validated experimentally [12]. This is why certain thermophysical parameters have 
been assumed for the modelled media. The model took into consideration the phase transition 
within the narrow region over 273 K with a substantial change in the thermophysical properties. 
The details concerning the model geometry, applied temperature input and media properties can 
be found elsewhere [13]. The temperature programme of a virtual experiment was composed of 
a steady oscillation over 263 K, oscillation with a linear scan from 262 K up to 323 K and 
finishing segment of a steady oscillation over 323 K. The oscillation period was equal to 120 s 
and the temperature change rate of the linear ramp equal to 1 K/min. Combination of these 
parameters with thermophysical properties of the modelled media resulted in kl equal to 1.55 in 
the low temperature region and equal to 3.91 in the high temperature region (comp. 
Fig. 3.a).The final results obtained applying FEM Comsol software are shown in Fig. 3. The 
identified TD values are in agreement with the expected ones. Moreover, the overestimation of 
the amplitude TD results in the low temperature region fully agrees with the result of the 
parameter a estimation: the TD relative difference of 6.4% is almost as has been expected for 
the kl=1.55 (comp. Fig. 2.b and Tab. 1). Performance of the applied correction procedure is 
illustrated in Fig. 3.b.  
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Fig. 3. Comparison between the uncorrected (a) and corrected applying Tab. 1 data for a (b) results of a TD 

identification in numerical modelling of the temperature oscillation experiment 
 

6. Conclusion 
 
The performed analysis has been focused on the metrological conditioning of the modified 

temperature oscillation technique of the thermal diffusivity measurement. The improvement is 
based on imposing linear temperature changes, similar to those known from DSC techniques, 
onto the temperature oscillations. The proposed modification facilitates investigation of 
materials exhibiting temperature dependence of thermophysical properties. The studies resulted 
in more precise definition of limits for application of a simplified procedure of the thermal 
diffusivity calculation. Moreover, by developing the correction procedure the limits of 
a standard formulae application have been extended. The same optimisation of real experiments 
has been made easier. The outcomes of the theoretical analysis have been validated by numerical 
simulation. The obtained results will be applied in investigation of materials exhibiting strong 
dependence of thermophysical properties including phase changes like ice accretion structures 
and heat shock absorbers.  
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