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Abstract 

This paper takes into consideration active control of a mechanical construction modelling a human chest subject 
to impulsive elastic loading comi ng from a fast moving light mass. The effect of impact causes some esse ntial 
deformation in the for m of distance decreasing between the front and back side  of the chest  resulting from 
compression of internal organs. One can attenuate such a destructive process by introduction of fast-response active 
control elements attached to the front or back side of the chest i.e ., from the direction of impacting mass or between 
back and support of the body. 

The problem of one- or two-dimensional control is not e asy to perform because of the consideration of the very 
short time of system’s reaction. At this stage there has been used an effective numerical procedure for both solution 
and LQR control method application in a dynamical system of three se parated elastically (rheologically as well) 
linked masses. Direction-de pendent coefficients of the rheological link (extendi ng our system to the seventh state-
space dimension) govern different properties of internal organs during their stretching and compression. It puts into 
the control scheme’s matrices time-de pendent coefficients of damping influencing th e optimal linear quadr atic 
regulator used in control. 

Keywords: elastic impact, multi-dimensi onal dynamical system, rheological model, human chest, LQR algorithm, 
numerical simulation 

 
1. Introduction 
 

In the area of widely developed new branch of biomechanics we can see the necessity of 
a deeper recognition of the character of constant or time-variable external loads influencing human 
organism. Some of more troublesome external loads for a human is a long-term or impulse impact 
interaction or its combinations. Among such phenomena the specific role is played by mechanical 
vibrations, or more precisely, their negative influence on the human organism working or existing 
in the conditions of harmful external surrounding. Unfavourable changes observed in human body 
are the consequences of e.g. professional exposition to vibrations with low or high frequencies and 
they depend on the place of penetration of these vibrations in the organism.  

Mathematical methods of active vibration control are well developed [3] and they constitute 
the base for development of new techniques of human organism protection against undesirable 
vibration propagation. Optimal control methods [4], dynamic analysis and motion illustration in 
some human-machine couplings, which are to be developed in this article, can be adapted to 
improve conditions of life and work, to decrease side-effects arising during work or even during 
human daily life’s activities. These methods of description and techniques of practical modelling 
of biomechanical interaction as well as the ways of negative influence compensation of external 
stimuli emitted to the human body vibrations of continuous or impulse character (e.g. chest 
protection against the effects of sudden impact of few kilos mass from the front on the level of 
breastbone) will be proposed. Mathematical analysis will be supported by quite new especially 
dedicated numerical procedures developed and optimized in the direction of solving 
multidimensional biomechanical elastic mass systems and also the systems of matrix equations 
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resulting from the proposed schemes of active control and their modifications. Such techniques as 
optimization of quality index on the basis of the linear optimal regulator theory with a feedback 
and its effective modifications, robust control with the usage of singular perturbation approach and 
synthesis of optimal system of vibration isolation of the coupling: a sitting human – system of 
vibration’s isolation constitute a starting point to the development of effective algorithms of active 
and passive compensation of vibrations. The scope of the proposed problems and provisional 
proposals of modelling and mathematical description is presented below. 

Interesting and ambitious problem of dynamical description of biological organs is the 
active control of certain biomechanical system modelling a human chest subject to an elastic 
impact of a mass of light weight. The impact causes deformation of chest appearing in decrease 
of the distance between its front and back part and at the same time compressing internal 
organs. Such destructive action can be to a certain degree leveled by applying active element 
with a very short time of reaction attached to the front part of human chest from the side of 
impacting mass. The task of this element will be weakening of the impact force leading to 
decrease of the compressing stress amplitude. The problem of such control is not easy to realize 
that is why in the first approximation it will be accepted that human trunk propels from the back 
side (back part of chest) against the wall (continuation and more advanced numerical scheme 
with additional supporting reduction of deformation of interior chest with reaction force from 
the side of the back will constitute the broadening of this problem). In this way the possibility 
of chest’s backward displacement as a result of impact will be restricted (such simplification in 
more advanced case will be omitted and some additional elastic stiffness and viscous damping 
will be introduced into the system). The problem will be mathematically discussed and  
the three-mass dynamical system with elastic coupling elements (also rheologic – see Fig. 1) 
written by means of a system of seven differential equations of first order will be numerically 
solved. 
 

 
Fig. 1. Schematic 4DOF model of a chest’s front m2 and back m3 sides and supported from behind with impulsively 

impacting mass m1 
 

The active control of the rheological structure of elastically connected masses concerns on 
some principles derived from a general approach [2]. Control of the investigated not subjected to 
any external loading three degrees of freedom parametrically discontinuous dynamical system 
represents a little particular case of the active control law used in the paper. There has been 
worked out a controlling scheme applied to the analyzed system, which after application of an 
initial velocity of impact coming from mass m1 at initial time t0 evaluates until the moment of time 
tf is reached. The system is not influenced by any external disturbances affecting it from the 
surrounding environment. 
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2. Mathematical background of the problem 
 

Let the following system of differential equations be given as follows: 
 ,0)(),()()()( 0txtutxttx BA  (1) 

where:  
A - (n n) time-dependent matrix of structure parameters,  
B - (n n) time-constant matrix of attachment of executing (regulatory) elements, 
x(t) - the n-dimensional state-space vector of the system, 
u(t) - the p-dimensional vector of controlling forces.  

Nomenclature convention used here and below uses an upper bar for notation of vectors in 
numbered formulas, bold italic font style for text-included notation of vectors and bold regular 
upper-case letters to denote matrices. 

Our task focuses on searching for the control force u(t) (see [2] for a particular description) that 
with some weighting matrices would satisfactorily minimize the cost function J in time t = ts for 
some time ts  tI = [t0, tf]: 
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where: 
 - time-dependent, 

Q, T, R - constant weighting coefficient matrices. 
 
2.1. Two-dimensional control force u(t) 
 

Using a part of the theoretical background extended in [2] it is convenient to provide the 
following final relations leading to the general form of control law that will be identified and 
utilized in the next sections of the work. Following the above it is proposed that 

 .)()( 1 txtu X
TT KBTR  (3) 

Equation (3) introduces one new matrix of (4n×4n) dimension called the Riccati matrix. 
Observe that the sought control law u(t) is governed by a proportional relation to the systems’ state 
vector. It is known and in our case necessary that the best method of estimation of the KX matrix 
and thereby estimation of u(t) is utilization of a proper convergent numerical procedure. This 
procedure solves the following matrix equation 
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A remark on the above, matrix KX is symmetric along its trace so there will be obtained 4n 
first-order differential equations on its coefficients. These equations depend on all (sometimes 
time-varying) system parameters of stiffness k, dumping c and, in a consequence, coefficients of 
the introduced rheological properties of the interior of the chest and distance d describing our 
model. Therefore, the problem must be treated in a non-standard way. Because validity of Eq. (4) 
covers all x(t) 0, then the expression in braces preceding x(t) must equal zero. Matrix KX has to 
satisfy then the following Riccati matrix equation, 

  (5) ,01
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also with inclusion of the final condition KX(ts) = KS, where KS is the matrix of known values 
selected at a time ts (not necessarily at tf) at which it would guarantee the minimal realization of J. 
Standard applications of such approach assume that values of KS instantly converge to a set of 
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constant values as t  tf. In the solution to our problem it is not assumed. Of course, equations in 
a number of 4n given in Eq. (5) must be numerically integrable in tI. Thus, we are able to 
determine both the Riccati matrix KS and the gain matrix fx (for all t  tI), 
 .)( 1

S
TT

x tf KBTR  (6) 

Finally, the following control law can be proposed: 
 .)()( txftu x  (7) 
 

2.2. The analyzed dynamical system 
 

Let A be a state matrix with some time-dependent (not constant) elements, and B, Q and R 
some constant matrices. Matrix KS of constant values only is a particular state of KX at a time ts. 
We have to regard to the standard approach that if the solution is stable for sufficiently large time 
tf, the approximate values of KX converge to an optimal matrix of . Evidently, one can assume 
that matrix KS is constant and is in some state represented by the solution to the Riccati equation 
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For the purpose of illustration of the route of the system’s control law estimation the simple 
mechanical system visible in Fig. 1 of three degrees-of-freedom modelling the dynamics of 
rheological model of a human chest subject to a sudden loading from mass m1 that is elastically 
connected with the front mass m2 of the chest. 

The next part of the application has to be preceded by some assumption. In order to control the 
system under investigation we have to additionally dispose of a virtual quick-response force 
generators of two control forces u(t) = [u1(t), u2(t)]T operating in two places means, between the 
first and second mass of the model (direct impact force compensator) and also between the chest’s 
back mass m3 and the not moveable wall (called here as a back side force compensator) as it is 
shown in Fig. 1. Equations of motion with an auxiliary force u(t) controlling the difference 
(x2  x3) are written in the following form 
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and for the system ready for application of numerical solution we find it in a form of set of seven 
first-order differential equations given in Eq. (10). 
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where v4 in the last equation of system (10) is not the state-space variable and can be substituted 
by the fourth equation of (9) providing 
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State-space matrix A(t) and the controlling forces’ matrix B defining their attachment points: 
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Formally, some coefficients of A(t) are distance d-dependent (see Eq. (11)) but it implies its 
indirect dependency on time as the system can evaluate irregularly. 

We propose a function of balance, which will precise the starting point as an input in the 
strategy of searching for the control force characteristics. Our fundamental task is to secure the 
amplitude of vibrations of the second mass minimized as low as possible in the preset interval of 
time t  (t0, tf). The system includes three time-dependent parameters that evaluate as below: 
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where d is a distance marked in Fig. 1. When controlled value (x2  x3) crosses over d then k23 
doubles its value, as well as, when (v2  v3) changes its sign from negative to positive and vice 

versa, then 23c  doubles its value too. In this way, there have been introduced basic rheological 

properties of the biomechanical model of our simply described human chest. Unquestionable 
drawback of that is confirmed because parameters of the system state-space matrix A and the 
Riccati matrix KX too are time-dependent that will consequently require a special attention and 
application of some approach in determination of coefficients of the gain vector fx. 
 
3. Control law and coefficients of gain matrix 
 

The cost function (2) will be given in a more consisted form. Therefore, let Q, R and T satisfy 
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Matrices Q and R are responsible here for the quality and the reaction properties of the 
controlled system’s response signal, respectively. Their coefficients are called weighting 
coefficients and, as it is seen, most of Q matrix’s coefficients equal zero. Assumption of such 
a trace of qij coefficients of Q is arbitrary for this case and, for instance, with regards to a structure 
the dynamical system’s equations qij for i = 2…7, j = 1…6 are zeroes. One should note that many 
of them do not improve the resulting response significantly, have minor influence or even being 
non-zero produce very irregular response. From other side, the bigger the amount of the 
coefficients is, the harder the response of the controlled system can be tuned. 

Using constant matrices Q and R and applying assumptions listed above, the following form of 
cost function can be rewritten:  
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We are interested in minimization of J in Eq. (13), and it is possible in this form (it was proved 
during numerical experiments that coefficients q45, q56 and q67 do have a minor influence so they 
are disregarded) to find numerically in real as the trajectory of the controlled system evaluates in 
time. One can try to estimate the integral in Eq. (13) numerically for some values compositions of 
qij and rij in time t [t0, ts] but there is 14 time-dependent square terms so it might be very difficult 
and cannot be applied directly, because it is also sensitive to coefficients of Riccati matrix and, it is 
more particularly taken into analysis in next section. 

Estimation of u(t) will be preceded by a numerical integration of Eq. (4) by means of the 
standard 4-th order Runge-Kutta procedure. 

Components of Riccati matrix KX during solution are denoted by 
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Substitution of the symmetric matrix KX given by Eq. (14) to Eq. (4) produces 28 first order 
differential equations of which the first one takes the form: 
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In Eq. (15)  terms are time-dependent variables of 1-ODE and computed one by one during 
numerical integration of the whole set of the Riccati matrix’s parameters. Next to them there are 
only constant terms of first stiffness of the system k12, masses mi, coefficients of reaction matrix 
R and q11, the first coefficient of Q matrix. The problem of stable solution of the ij system could 
be not so difficult to investigate if all of ij (see Eq.(14)) first-order differential equations would 
contained only time-independent system parameters like k12. There have been introduced in 
Eq.(11) non-constant system parameters (to describe the problem better in a bioengineering way) 
that will destabilize the solution for KS coefficients denying for a convergence to a constant 
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values, what would be desired for perfect realizations. One of such differential equations involving 
time-dependent system parameters takes the form: 
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Parameters  and )(23 tk )(23 tc  are these unpredictable disturbance terms of the whole system of 

equations. It has a crucial consequence in the selection of the time at which one assumes that 
matrix KS would guarantee proper coefficients of gain matrix fx having the most important 
influence on control quality.  

Equations for ij  (with its exemplary representatives shown in Eqs. (15) and (16)) are then 

integrated numerically since time ts producing their final values: 
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The knowledge of all components of KS (with T=0, see Eq. (6)) permits for calculation of the 
final time dependent gain matrix:  
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The resulting gain matrix is of dimension (2×7) and can be used in calculation of control forces 
accordingly to: 
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where fij (i = 1,2, j = 1…7) are constant, but x(t) is the standard solution of non-controlled system. 
Procedure of numerical computations has to be executed subsequently from the standard solution 
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of the dynamical system, through estimation of Riccati matrix’s coefficients and coefficients of the 
gain matrix of the LQR algorithm finishing at the desired solution of controlled system. It is here 
necessary because of the non-stationary system taken into investigations. 
 
4. Numerical simulation 
 

The following set of system parameters is assumed: m1=1.6, m2=0.45, m3=27 [kg], d=3.81[cm], 
k12 = 281, k23 = 26.3, 23k  = 13.2 ks = 10 [·103N/m], c23 = 1.23, 23c  = 0.18, cs = 0.11 [·103Ns/m] and 

initial conditions: xi(0) = 0 (i = 1…4) [m], v1(0) = 13.9, vi(0) = 0 (i = 2…4) [m/s]. 
Figure 2 presents a measurable effect of application of the control scheme procedures (see [1] 

for some background) derived in previous sections. Difference between x2 and x3 has been taken as 
the measure of deformation of the chest’s interior, so its only acceptable small values should 
secure internal organs from any undesirable compression and injuries. 
 

 
Fig. 2. Time histories of control variable (x2-x3) for standard (dashed line)and controlled (solid line) system solution  

  
Control scheme coefficients qij and rij for the response characteristics visible in Fig. 2 are set as 

below (compare with Eq. (12)): 
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Set of constants of the control law has been found experimentally by execution of many 
attempts and comparison of the resulting graphs, so the final shape of the controlled system’s 
response with application of two active elements as it was described may be not the most optimal. 
Nevertheless, it is now highly acceptable especially when maximal amplitudes of the two signals 
of the systems are compared. Maximum of the dashed-line time history reaches 2.246 [cm] while 
the solid-line time history of the controlled system response 1.006 [cm]. Thanks to the control 
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scheme the difference amplitude (x x )  has been reduced to 2 3 c %8.44
246.2

006.1246.2
1%100  

 
of its non-controlled original adequate (x2 x3). 

. Conclusions 

The presented idea of active control of biomechanical structures is valid for the general concept 
of 
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previous investigations on possibilities of application of the performance index minimization 
method to fast time-changing models. For the purpose of solution of the biomechanical model 
given in the state-space representation with a time-dependent coefficients of the system state 
matrix it was necessary to develop some numerical methods allowing for the correct estimation of 
the control system coefficients. These were found and do not guarantee the best response 
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mentioning here the model of description of the problem is relatively simple, solved by means of 
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finite element methods of commercial packages. Results are promising and confirm that the active 
control method is suitable to control fast response systems. One can try to imagine yourself such 
a fast reaction force real mechanism that could realize the desired type of dynamical response. 
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