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Abstract 

Elastomer materials are commonly used in manufacture of parts of machines and vehicles. A numerical analysis 
of these elements is possible with many c alculation methods, however, due to such properties as incompressibility, 
very often large deformations, non-linear constitutive compounds, friction and contact phenomena, an analysis by the 
finite element method turns out to be a very complicated task. 

The purpose of experimental studies w hich were car ried out was t o determine parameters of hyperelastic 
materials used for production of elastomer tracks for industrial vehicles. Exper iments were carried out with rubber 
test samples of the hardness close to the hardness of materials used for manufacture of rubber tr acks, lining of t he 
driving wheels and track rollers. These parameters were determined for models of hyperelastic materials (Mooney-
Rivlin) used for calculations. The obtained results were compared by numerical calculations with the help of the finite 
element method with a model sample at identical load conditions for various models of a material including a material 
of linear properties (of the constant Young’s modulus). 

Obtained results of studies and numerical analyses demonstrate only a limited potential of t he use of line ar 
models for hyperelastic materials – this use is possible only at small deformations. Obtained results of measurements 
and analyses can be used for proper modelling of parts made of elastomer materials. 
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1. Introduction  
 

Structural elastomer materials used for many years (to manufacture e.g. sealings, tyres, linings 
of friction transmission wheels etc) call for a different description than materials modelled as 
linear-elastic (e.g. steel). Non-linear constitutive compounds, large relocations and material 
incompressibility are the reason why numerical calculations by numerical methods (e.g. FEM) for 
the analysis of loads on elements made of elastomers (e.g. rubber) are among the most 
complicated. A proper set of data describing the material behaviour under load is one of essential 
factors affecting the correctness of results of such numerical analyses. 

Rubber defined as a hyperelastic material (Mooney [1], Rivlin [2], Ogden [3]), which can be 
deformed elastically within a very wide range up to several hundred percent, is the most 
commonly used incompressive elastomer. A feature characteristic for rubber-based materials of 
a practical incompressibility causes the Poisson ratio to be close to 0.5 (while practically assumed 
values are: 0.48-0.5). 
 
2. Numerical modelling of hyperelastic materials 
 

Numerical analyses with the help of the FEM require a mathematical definition of material 
properties in the form of the relationship between the deformation and the stress. In case of 
isotropic and uniform materials, satisfying the Hooke's law, only two parameters, the Young’s 
modulus and the Poisson ration suffice to characterise these properties. For modelling hyperelastic 
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materials one assumes the postulate of the existence of the functional of the material deformation 
energy density, which depends on certain parameters characterising the state of deformation. In 
practical applications there are usually two forms of the deformation energy density functional 
depending on the parameters, which are characteristic for the deformation state; these are the 
deformation tensor invariants I1, I2, I3 or the deformation tensor eigenvalues 1,  2,  3. 

Models based on the form of the deformation energy density functional, with this deformation 
energy depending on the deformation tensor eigenvalues, are represented by the Ogden [3] model, 
which by assumption takes into account a certain compressibility of a material. 

The Mooney’a-Rivlin model most often used for modelling of rubber elements, a part [1, 2] is 
based on the invariant form of the deformation energy density functional, and in its original form 
assumes a material is incompressible. This is a multiple-parameter model of constant coefficients 
with which we can describe actual material characteristics for different kinds of rubber. The 
number of parameters required to describe a material [2, 5 or 9] depends on the shape of 
characteristics obtained from deformation tests under load, e.g. during stretching. 
 
3. Determination of material characteristics for FEM analysis 
 

Types of tests for determination of various material characteristics are shown in Fig. 1. 
 

 

Fig. 1. Test methods for determining material properties 
 

Depending on the selected analysis to determine necessary material parameters (for a selected 
calculation model) adequate experimental testing must be carried out. Tension tests, which are 
most common (Fig. 1a) in case of other deformation states, e.g. compression (Fig. 1b) do not 
suffice. In the event of an incompressible material, e.g. in case of rubber-based elastomers, which 
can be regarded as such, parameters obtained from the compression test depend on the area of the 
so-called free surface of an element under deformation, or as matter of fact, on the relation of the 
loaded surface of an element to the unloaded surface of this element. Depending on this definition 
of the shape coefficient and on the rubber stiffness obtained values can vary significantly. Very 
non-linear FEM analyses can be very sensitive to the quality of entered data, therefore 
experimental testing including multi-axial load states including shearing must be carried out. 
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4. Experimental testing 
 

Studies were conducted with elastomeric materials used for production of elastomer tracks of 
industrial vehicles. Apart from the hardness no other properties of rubber were known. Analyses 
were carried out for uniaxis compression and uniaxis tension. Experimental tests were carried out 
at room temperatures with standardised test samples [4, 5]; flat (for tension) and cylindrical (for 
compression) at a tension-testing machine with which deformations of test samples at speeds as 
prescribed by standards [4, 5] were possible.  
a) Uniaxis tension 

Three test samples of the type 1 [4] (basic shape of a tensile dog bone) were tested and on the 
basis of obtained results an averaged relationship: stress – deformation was determined; as shown 
in Fig. 2. 
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Fig. 2. Averaged relationship -  obtained by uniaxis tension 

 
b) Uniaxis compression 

In a similar way as above, tests were carried out on three cylindrical samples according to the 
standard [4] and for further calculations results recorded for the fourth deformation of the sample 
were used. Fig. 3 presents an averaged relation stress - deformation for compression.  

To determine parameters of the hyper elastic material model one has used a function 
implemented in the ABAQUS [6] software; a function, which basing on entered data allowed to 
automatically obtain coefficient values for a selected constitutive law. In the analyses which 
were carried out one decided to apply the most common Mooney-Rivlin model and for these 
model coefficients were determined, which characterise a hyperelastic material tested 
in experiments. The extent to which the used model matched the obtained parameters is shown 
in Fig. 4. 

Obtained parameters of the model were verified by comparing experimental testing data 
against data from numerical calculations. To this end one has constructed a numerical model 
of cylindrical test sample (Fig. 5), and this model was subjected to loads corresponding to 
conditions at a tension-testing machine. Some parameters of FE model: element type: solid 
(continuum) 4-nodes tetra, load: pressure on top plane of test sample corresponding to applied 
force on the tension-testing machine, constraints: nodes on bottom plane has fixed dislocation 
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along vertical axis, boundary condition: in FE model passed over friction between test sample 
and parts (steel planes) of tension-testing machine, material: nonlinear, hyperelastic (Mooney-
Rivlin model). 
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Fig. 3. Averaged relationship -  obtained by uniaxis compression  
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Fig. 4. Curve fit from ABAQUS software by uniaxis tension 

 

Numerical model were prepared with the NE/Nastran.Modeler and the numerical analyses were 
carried out with the ABAQUS programme. Fig. 6 shows numerical calculation results against 
experimental testing results. 

The analysis by the FEM with a test sample subjected to tension (dog bone, a 2D-plane stress 
analysis), however, assuming constant Young’s modulus (a linear elastic analyses) demonstrates 
(Fig. 7) that at deformations greater than 0.1, a liner model does not reflect the sample behaviour 
properly. 
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Fig. 5. Finite element model of cylindrical test sample 
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Fig. 6. Comparison of experimental and finite element models  
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Fig. 7. Comparison of experimental and linear finite element model (tensile dog bone sample) 
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5. Conclusions 
 

Small strain analysis using linear elastic material properties would produce acceptable results, 
but as the engineering strain increases past 0.1 the errors increases rapidly.  

In case of non-linear analyses results obtained from numerical calculations depend very much 
on the quality of entered material data, which can be gained only by way of experimental testing. 
They can also serve to verify data quoted by material manufacturers.  
 
References 
 
[1] ABAQUS Documentation, Ver. 6.6, 2006. 
[2] Mooney, M., A theory for large elastic deformation, J. Appl. Phys., 11, 1940. 
[3] Ogden, R. W., Non-linear elastic deformations, Dover Publications, Minessota, NY 1997. 
[4] PN-C-04253:1954, Rubber - Designation of deformation at compression. 
[5] PN-ISO 37:2007, Rubber and thermoplastic caoutchouc - Designation of strength properties 

at tension. 
[6] Rivlin, R. S., Forty years of nonlinear continuum mechanics , Proceedings of the IX Inter-

national Congress on Rheology, Mexico 1984. 

92


